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unfailing enthusiasm, tremendous support and encouragement provided continuous inspiration
throughout my career. In addition, special gratitude is to my friends and colleagues Jaroslav Kruis,
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Chapter 1

Thesis summary

1.1 Introduction

The modern design and assessment of building structures cannot be realized without assuming
temperature and moisture changes caused mainly by climatic conditions. Research in concrete and
other porous materials shows a correct prediction of temperature and moisture content distribution
and history necessary for a realistic determination of phenomena like shrinkage, creep, aging,
thermal dilatation, swelling, cracking, plastic deformation, and others. Furthermore, most of the
material properties are influenced directly by temperature and moisture fields.

In the last four decades, material behavior modeling has experienced a considerable develop-
ment, particularly in the connection with computer technology development. In the case of porous
materials modeling, a significant progress has been made, and many material models have been
developed. In many cases, they describe the behavior of only one phenomenon, and therefore it
is necessary to use their combinations. In many application areas, the solution of coupled hydro-
thermal or thermo-hydro-mechanical analyses is required. It includes problems such as evaluating
the safety and service life of remarkable concrete structures, reconstruction of historical masonry
structures, nuclear waste disposal, geomechanical issues, and many others.

Porous materials are characterized by a complicated internal structure with open and closed
pores usually filled with water, water vapor, and dry air. Models describing an interaction be-
tween the constituents and their transport through a porous matrix are based on the macrome-
chanical approach with phenomenological and mixture theory models and the micromechani-
cal viewpoint comprising averaging theories. A comprehensive review of porous media theories
can be found in [de Boer, 1996]. In this reference, the concept of volume fraction introduced
in [Woltman, 1974] is discussed together with two fundamental contributions about the diffu-
sion of mixtures [Fick, 1855] and the motion of a liquid phase [Darcy, 1856]. The fundamental
works [Fillunger, 1913] and [von Terzaghi, 1923] about the deformation of saturated soils using
the effective stress principle and its generalization and extension in [Biot, 1941] and [Biot, 1956]
were also mentioned. As for micromechanical models, the underlying theory was formulated
in [Hassanizadeh and Gray, 1979] and summarized and well-arranged together with the extended
Biot’s approach in [Schrefler and Lewis, 1998]. In the case of building materials, the phenomeno-
logical models are top-rated. Their advanced versions can be found, e.g., in [Pedersen, 1990] and
[Künzel and Kiessl, 1997], which are based on experimental results and physical evidence.

Individual attention in mathematical modeling of porous materials was paid to concrete and
concrete structures, where Bažants’ models are the most popular for analyzing the long-term
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behavior of concrete, including hydro-thermal effects. A typical phenomenological approach
considering single moisture flux, i.e., a single fluid phase, which includes both liquid water
and moist air, is introduced, e.g., in [Bažant and Najjar, 1972], [Bažant and Thonguthai, 1979],
[Bažant and Chern, 1985] and [Bažant and Kaplan, 1996] considering high temperatures expo-
sure. The model equations are usually derived employing thermodynamics of irreversible phe-
nomena. The parameters are often determined by inverse problem solutions using known results
of experimental tests to obtain the best agreement between theoretical prediction and experi-
mental evidence. A comprehensive overview of developed models can be found in [Bažant, 1988],
[Jirásek and Bažant, 2002], and in the latest book [Bažant and Jirásek, 2018], which is intended
for researches, educators, and practicing engineers.

Several models have been developed to predict temperature and pore pressure distributions
in concrete exposed to fire conditions. All of them utilize an analysis procedure that involves
the strongly coupled heat and mass transfer within the concrete. Such models typically include
consideration of the mass transfer of air and water by diffusion as mentioned above, forced con-
vection, conversion of liquid water to vapor and release of water of hydration. They also comprise
heat transfer by conduction, mass diffusion, and forced convection with the inclusion of the effects
of the heat of vaporization of water, the heat of dehydration, and the thermal capacity of the
concrete [Pesavento, 2000].

Many concrete modeling conclusions are extended and modified for masonry materials and
structures. They are mainly models describing mechanical behavior like damage and plastic-
ity models. Homogenization techniques usually treat the heterogeneity of masonry constituents
providing effective macroscopic properties and response. A brief overview of several of them is
presented in [Milani, 2015], [Lourenco et al., 2007], and [Krejč́ı et al., 2021]

Soils are simulated as partially saturated or fully saturated porous media in geomechanics.
The description of consolidation and other slow, quasi-static phenomena coupled with moisture
flow is often based on the effective stresses principle. The application area is vast, comprising, e.g.,
the transient analysis of footing, pile foundation, and soil-structure interaction. For this purpose,
the thermo-hydro-mechanical studies are supported by linear or non-linear elastic and elastoplas-
tic constitutive relationships suitable for quasi-static situations. Frequently used models include
the Mohr-Coulomb model [Zienkiewicz and Taylor, 2000], [Nayak and Zienkiewicz, 1972] and the
critical state model - Cam-clay model [Roscoe et al., 1963], [Schofield and Wroth, 1968] and its
extended version [Roscoe and Burland, 1968]. In recent years, the very discussed and researched
topic in geomechanical engineering is nuclear waste disposal, which demands high safety, reliabil-
ity, and durability. Barriers built from bentonite as a buffer material are considered to ensure the
impermeability of such safe nuclear repositories. Many constitutive models for expansive clays
and bentonite were introduced, accounting for the coupling of heat, moisture (liquid water and
water vapor), and air transfer in a deformable unsaturated soil with two distinct pore systems.
Independent coupled models are considered for each structural level, micro and macro level. The
models are linked using a coupling function to obtain a global response. A pioneering model
for such a double structure approach was proposed in [Alonso et al., 1995], [Alonso et al., 1999]
and [Alonso et al., 2011] combining existing plasticity models with a simple reversible model for
microstructure. Recent research in modeling the hydro-mechanical or thermo-hydro-mechanical
behavior of unsaturated soils shows the need to couple mechanical and hydraulic responses. The
volumetric deformation of the soil skeleton influences the degree saturation and the value of suc-
tion, which affects the effective stress and mechanical properties. This dependency was introduced
into the latest double structure models presented, e.g., in [Maš́ın, 2013],[Maš́ın and Khalili, 2016]
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and [Maš́ın, 2017], where the macrostructural mechanical model is based on the existing hy-
poplastic model. Hydro-mechanical or thermo-hydro-mechanical coupling at each structural level
is efficiently achieved by linking the effective stresses formulation with the water retention model.
The benefit of the model is the small number of material parameters, which has been evaluated
by simulation of comprehensive experimental data [Maš́ın, 2017].

The solution of complex coupled thermo-hydro-mechanical analyses usually leads to the solu-
tion of the system of non-linear partial differential equations. For the most real-world problems,
it has to be solved numerically. Several numerical methods can be used for such systems, among
which the Finite Element Method (FEM) is one of the most sophisticated and developed. The
method transforms the solution of the continuous problem into the discrete problem, and the
system of partial differential equations is transformed into the system of the algebraic equa-
tions, which can be linear or non-linear depending on the problem solved. More details about
FEM discretisation can be found in [Bittnar and Šejnoha, 1996], [Schrefler and Lewis, 1998] or
[Zienkiewicz and Taylor, 2000].

Using the discretisation by FEM, the mechanical problems are described by two or three
unknown displacements in nodes for two-dimensional or three-dimensional issues, respectively.
The temperature, relative humidity, or partial pressures are assumed in the nodes in the heat
and moisture transfer, leading to two or three unknowns. So the general three-dimensional case
is described by up to six unknowns in every node of the mesh. It implies that the requirements
on computers are very high, and they increase rapidly with the increasing number of nodes in the
mesh used.

The number of nodes in the mesh is influenced by the size and complexity of the geometry as
well as by the boundary conditions and used materials, which often require adopting fine mesh due
to steep gradients of the unknown function. These difficulties allow only simple three-dimensional
problems to be solved on single-processor computers. Fortunately, a significant development of
parallel computers and algorithms occurred during the last three decades. Parallel computers
are based on two conception - systems with shared memory and distributed memory systems.
In systems with shared memory, the memory is a pool shared by several processors or several
processor cores, while in the case of distributed systems, several ordinary computers are connected
by the high-speed network or even Ethernet. The advantage of the shared memory systems is the
fast access to memory, but the high cost limits the system’s evolution. The speed of distributed
systems is lower due to communication overhead, but their development is almost unlimited.
The advantages of parallel computing are effectively used to analyze real-world problems by the
domain decomposition methods, which can deal with significantly larger problems and reasonably
fine meshes [Kruis, 2006].

1.2 Scope of the thesis

This thesis was written based on experiences with modeling of real-world engineering problems,
which were solved mostly as complex coupled thermo-mechanical and thermo-hydro-mechanical
tasks with the author’s participation at the Department of Mechanics of Faculty of Civil Engineer-
ing of Czech Technical University in Prague in the years 2003 - 2020. These problems were solved
with the scope of projects supported by the Czech science foundation, and Technology Agency of
the Czech Republic, research projects from Czech Ministry of Education Youth and Sports, and
also in the research center CIDEAS which enabled collaboration between research teams at the
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three civil engineering faculties in the Czech Republic, Czech technical university in Prague, Brno
university of technology, VSB - Technical University of Ostrava in conjunction with the corporate
research professionals in large building companies Skanska, a.s., Metrostav, a.s., EUROVIA CS,
a.s., Zakládáńı staveb, a.s., where the involved companies required to solve concrete structures
with advanced models taking into account creep effects, shrinkage, and damage effects. Coupled
analyses were also essential parts of several European projects, e.g., past project MAECENAS (in
the years 2001 - 2004) which was focused on modeling of aging in concrete nuclear power plant,
and actual projects BEACON and EURAD dealing with the analysis of geological repositories for
nuclear waste storage.

The present thesis aims to show possible strategies of combining the most widely used mathe-
matical models describing heat and moisture transfer in porous media and the most widely used
mathematical models describing the mechanical behavior of porous material and structures in-
fluenced by temperature and moisture changes. Such a combination of transport models and
mechanical models leads to the numerical solution of coupled problems that can be thermo-
mechanical, hydro-mechanical, or thermo-hydro-mechanical. Significant attention is paid to the
computer implementation and practical applications to real-world engineering problems.

It should be noted that all described problems were solved by the SIFEL package which is
developed at the Department of Mechanics by Jaroslav Kruis, Tomáš Koudelka, and Tomáš Krejč́ı
as primary authors and several coworkers. SIFEL is developed under the GPL license, and its
web pages can be found in [Kruis et al., 2021].

The thesis is organized into six chapters. Chapter 1 introduces a brief description of the basic
governing equations for the main problem types - mechanics, heat transfer, and moisture transfer.
It also contains a brief description of the discretisation of these nonlinear partial differential
equations based on FEM. The main attention is paid to the two basic strategies of coupled problems
solution - staggered approach and fully coupled approach.

Chapter 2 deals with the implementation of the FEM for the coupled problems in the SIFEL
software package. The chapter summarizes basic ideas of the code, which is written in the C++
language. There is a short description of several base classes used in the code which store fun-
damental data used in the FEM analysis, such as topology, matrices, solvers, and internal state
variables. The extensibility of the code is demonstrated on numerical examples of the coupled
problems in the following chapters.

Chapters 3, 4, and 5 present three analyses selected as illustrative applications of numerical
solution of coupled problems. The first - the analysis of the containment of nuclear powerplant
in Temeĺın, the second - the analysis of Charles bridge and the third - the numerical model of
bentonite in an engineered barrier for nuclear waste storage. All of them were solved to describe
and predict long-term deformation processes in building and engineering structures. Each study
is accompanied by a theoretical basis of the used mathematical models in condensed form. For
numerical simulations, some approaches were modified and extended to capture the real struc-
ture behavior as best as possible. Moreover, all simulation results were compared and validated
against in-situ measurements. The improvement of numerical models in conjunction with in-situ
measurements is always considered as an invaluable tool.

The last Chapter 6 summarizes the main conclusions made of the performed analyses and also
main capabilities that were implemented in the SIFEL package.
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1.3 Main benefit of the thesis

The main benefit of the thesis is seen in gradual combinations and coupling of various mathe-
matical models and their applications to real-world engineering problems. In Chapter 2, in the
thermo-mechanical analysis of nuclear powerplant containment, a combination of the nonstation-
ary heat transfer model with the concrete creep model influenced by thermal and moisture changes
is presented. The creep model is extended and transferred into retardation spectra to speed up the
computational time. In Chapter 4, the thermo-hygro-mechanical analysis of a historical masonry
bridge couples a phenomenological hygro-thermal model extended by climatic conditions effect in
the transport part with isotropic and orthotropic damage models in the mechanical part. In Chap-
ter 5, a micromechanical approach-based hygro-thermal model for a porous deforming medium is
connected with a complex hypoplastic model for expansive clays. The hygro-thermal model comes
out from the derivation presented in [Schrefler and Lewis, 1998]. For coupling with the hypoplastic
model, the hygro-thermal model is extended by the effect of the volumetric changes on the satura-
tion degree and pore pressures distribution. Each analysis is supported by model verification and
validation of material parameters against in situ measurements. Owing to the modularity of the
used in-house software SIFEL, the thesis can serve as a guideline for implementing and coupling
complex material models.
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Chapter 2

Numerical solution of coupled problems
and its computer implementation

2.1 Mechanical problem

Porous materials are materials with very complex behavior. For example, creep, shrinkage, thermal
dilatancy, plasticity, damage, and crack propagation are the most important phenomena which
should be taken into account for concrete modeling. Each model usually describes only one
aspect of concrete behavior, and it is necessary to combine several effects. A variety of models
can be found, e.g., for creep modeling in [CEB, 2008], [Jirásek and Bažant, 2002], for crack and
damage modeling in [de Borst, 1987] and for modeling of plasticity in [Jirásek and Bažant, 2002],
[Ottosen and Ristinmaa, 2005] or [Chen and Chen, 1975]. A standard approach for the particular
effect combination comes out from the total strain decomposition. Under the assumption of sall
strains, the total strain can be additively decomposed into individual components

εtot = εe + εp + εd + εc + εsh + εag + εT , (2.1)

where εtot denotes the total strain, εe denotes the elastic strain, εp stands for the plastic strain, εd
stands for the damage strain, εc is the creep strain, εsh denotes part of strain caused by shrinkage,
εag stands for the strain caused by aging and εT is the free thermal strain.

In the mechanical problem, the system of equilibrium equations which describes equilibrium
in the three-dimensional domain Ω can be written as follows

∂Tσ + b = o, (2.2)

where σ is the stress vector, b is the vector of body forces, o is the zero vector, and ∂ is the
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operator matrix defined as follows

∂ =



∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y
∂

∂z
0

∂

∂x
∂

∂y

∂

∂x
0



. (2.3)

The stresses σ in the Equation (2.2) are connected with the strains by the constitutive equations
which can be written

σ = f(ε). (2.4)

The strain-displacement equations give the relation between strains ε and unknown displacements

ε = ∂u, (2.5)

where u is the displacement vector.
Appropriate boundary conditions must supplement Equations (2.2)

u = ū on Γu, (2.6)

lσ = t̄ on Γt, (2.7)

where ū is the vector of prescribed displacements on the boundary Γu, and t̄ is the vector of surface
tractions on the boundary Γt. The surfaces Γu and Γt have to satisfy the following relations

Γ = Γu ∪ Γt, (2.8)

Γu ∩ Γt = 0, (2.9)

where the symbol Γ represents the total boundary of the domain solved Ω. The matrix l contains
components of the unit normal vector n to the boundary

l =

 nx 0 0 0 nz ny
0 ny 0 nz 0 nx
0 0 nz ny nx 0

 . (2.10)

These basic equations can be discretized using the standard displacement version of the FEM
[Zienkiewicz and Taylor, 2000], [Hughes, 1987], [Bittnar and Šejnoha, 1996], where the displace-
ment components are approximated as linear combinations of given interpolation (shape) functions
Nk(x), k = 1, . . . , Nn. Each of the functions is associated with one degree of freedom (DOF) of the
modeled domain. The basic properties of every shape function are that Nk(xk) = 1 in the given
k-th node and Nk(xj) = 0, k 6= j for all remaining nodes. Approximation of the displacement
field can be written as follows

ui(x) ≈
Nn∑
k=1

Nk(x)dki, i = 1, 2, 3 (2.11)
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where dki are unknown nodal displacements. Equation (2.11) can be rewritten in the matrix form
as

u(x) ≈Nu(x)du, (2.12)

Nu(x) is the matrix of shape functions, and du is the vector of unknown nodal displacements.
The kinematic Equation (2.5) can be approximated based on the above equation as

ε ≈ Bu(x)du, (2.13)

where Bu(x) is the strain-displacement matrix containing the appropriate derivatives of the shape
functions with respect to spatial coordinates.

Equation (2.13) can be substituted into the constitutive Equations (2.4), and the stress ap-
proximation reads

σ(x) ≈Du(x)Bu(x)du, (2.14)

where Du represents the material stiffness matrix. In general, the static Equations (2.2) cannot
be satisfied for each point of the domain because the approximations depend on the finite number
of unknown displacement parameters. In this case, Equation (2.2) can be replaced by virtual work
principle [Hughes, 1987] which leads to the weak form of the equilibrium equations, and it is given
by the equality ∫

Ω

σT δε dΩ =

∫
Ω

bT δu dΩ +

∫
Γt

t̄
T
δu dΓt, (2.15)

which has to be satisfied for arbitrary virtual displacement field δu and virtual strain field δε which
satisfies the kinematic equation, δε = ∂δu in Ω, and kinematic boundary conditions δu = 0 on
Γu. Assuming the same form of the virtual displacement field

δu ≈Nuδd, (2.16)

yields the virtual strain field derived from the kinematic equations

δε ≈ Buδd, (2.17)

where δd is the vector of virtual displacement parameters. Similarly, the body forces and tractions
from the Equation (2.2) and (2.7) can be approximated by suitable functions

b ≈ N b(x)b̂, (2.18)

t̄ ≈ N t(x)t̂, (2.19)

where the vectors b̂ and t̂ represent nodal values of body forces and tractions, respectively. N b and
N t are matrices of suitable shape functions. In usual cases, the same type of shape functions is
used to approximate unknown displacements, tractions and body forces, and virtual displacements.

Substituting Equation (2.16) and (2.17) into the Equation (2.15), the following condition is
obtained∫

Ω

dTuB
T
u (x)DT

u (x)Bu(x)δd dΩ =

∫
Ω

b̂
T
NT

u (x)Nu(x)δd dΩ+

∫
Γt

t̂
T
NT

u (x)Nu(x)δd dΓt. (2.20)

The vectors δd and du are not functions of the spatial coordinates, and they can be taken out
of integrals. Assuming the stiffness matrix as

Ku =

∫
Ω

BT
u (x)Du(x)Bu(x) dΩ, (2.21)
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and the load vector as

f ext =

∫
Ω

NT
u (x)Nu(x)b̂ dΩ +

∫
Γt

NT
u (x)Nu(x)t̂ dΓt, (2.22)

Equation (2.20) can be rewritten after some arrangements in the form

Kudu = f ext. (2.23)

The equation’s system (2.23) represents the discretized equations of equilibrium from which the
vector of unknown nodal displacements du can be determined. If the material is linearly elastic and
homogeneous, the stiffness matrixDu contains constant coefficients and Equation (2.23) represents
the linear algebraic equations system. In other cases, the stress-strain relation is nonlinear, and
it can be written as

σ = σ̄(ε), (2.24)

where σ̄ represents the constitutive operator. Using the same procedure for the strain approxi-
mation yields

σ(x) = σ̄(Bu(x)du). (2.25)

The weak form of the equilibrium equations takes the form∫
Ω

σ̄T (Bu(x)du)Bu(x)δd dΩ =

∫
Ω

b̂
T
NT

u (x)Nu(x)δd dΩ +

∫
Γt

t̂
T
NT

u (x)Nu(x)δd dΓt (2.26)

which can be rewritten to the final form of discretized equations of equilibrium

f int(du) = f ext, (2.27)

where f int(du) denotes the vector of internal forces which is defined as

f int(du) =

∫
Ω

BT
u (x)σ̄(Bu(x)du) dΩ. (2.28)

Relation Equation (2.27) represents the system of nonlinear algebraic equations, which is usually
solved numerically by the Newton-Raphson method [Bittnar and Šejnoha, 1996].

In the case of the time-dependent analysis, it is convenient to rewrite the system (2.23) into
the rate form

Kuḋu = ḟ ext. (2.29)

For the numerical solution, the above equation is transferred to the incremental form assuming
the strain decompsition (2.1)

Ku∆du = ∆f ext + ∆f 0, (2.30)

where ∆f 0 =
∫

Ω
BT
u (x)Du(x)∆ε0(x) dΩ is the vector including increments of non-mechanical

strains ∆ε0 = ∆εp + ∆εd + ∆εc + ∆εsh + ∆εag + ∆εT .
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2.2 Transport problem

The numerical modeling of transport processes will be shown on the heat transport problem with
the unknown temperature T , which is generally spatial (x) and time (t) dependent. The well
known transport equation - Fourier’s law expresses the relation between temperature T and the
heat flux q

q = −λ∇T (x, t) (2.31)

where λ is the thermal conductivity tensor, and ∇ stands for the gradient operator (grad). Usually,
in the matrix form, the off-diagonal components of λ are equal to zero for isotropic materials. The
boundary flux in the direction of a normal vector n has the form

qn = −nTλ∇T. (2.32)

The above flux can be also written via sumation rule for 3D problem

qn =
3∑
i=1

qini = −
3∑
i=1

3∑
j=1

λij
∂T

∂xj
ni , (2.33)

where ni is the i-th component of the normal vector.
The energy conservation equation for the domain Ω has the following form

∇T
(
λ∇T (x, t)

)
− ρc∂T (x, t)

∂t
+Q(x, t) = 0, x ∈ Ω, (2.34)

where ∇T stands for the divergence operator (div), Q denotes the source of heat per unit volume,
ρ is the density and c expresses the heat capacity. Γ is the boundary and it can be split into four
parts ΓT , Γqp, Γqc, and Γqr according to four boundary conditions type

� Dirichlet boundary condition for prescribed temperatures

T (x, t) = T (x, t) , x ∈ ΓT (2.35)

� Neumann boundary conditions for prescribed heat flux

qn(x, t) = q(x, t) , x ∈ Γqp (2.36)

� Newton or Cauchy conditions for heat transmission

qn(x, t) = βT (T (x, t)− Text(x, t)), x ∈ Γqc (2.37)

� Radiation boundary condition

qn(x, t) = e0σb(T
4(x, t)− T 4

∞(x, t)) , x ∈ Γqr. (2.38)

qn stands for the value of boundary flux in the direction of normal n vector, Text denotes the
ambient temperature and βT [Wm−2K−1] is the heat transfer coefficient on the boudary, e0 is the
emisivity of the boundary (0 < e0 < 1) related to the black-body radiation, and σb = 5.68 · 10−8

[Wm−2K−4] is the Stefan-Boltzmann coefficient, and T∞ is the temperature of the radiation source.
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In numerical simulations, the fourth condition is ussually transferred into the flux prescribed or
linearized, and it will not be used in the following text.

The heat transfer problem must be completed by initial conditions

T (x, 0) = T0(x) . (2.39)

The problem has non-homogeneous boundary conditions, which will be transformed into homoge-
neous conditions. The function T is split into two parts

T (x, t) = T̃ (x, t) + T̂ (x, t), (2.40)

which satisfy the following conditions [Kruis et al., 2021]

T̃ (x, t) = 0 , x ∈ ΓT , (2.41)

T̂ (x, t) = T (x, t) , (2.42)

T̂ (x, 0) = T0(x) . (2.43)

Application of the Galerkin method on (2.34) and substitution of (2.40) leads to the expression∫
Ω

δT ∇T
(
λ
(
∇ T̃ + ∇ T̂

))
dΩ +

∫
Ω

δTQ dΩ =

∫
Ω

δTρc

(
∂T̃

∂t
+
∂T̂

∂t

)
dΩ (2.44)

The first term of Equation (2.44) can be modified∫
Ω

δT ∇T
(
λ∇(T̃ + T̂ )

)
dΩ =∫

Γ

δT
(
nTλ(T̃ + T̂ )n

)
dΓ−

∫
Ω

(∇ δT )Tλ∇(T̃ + T̂ ) dΩ = (2.45)∫
Γqp

−δT q dΓ +

∫
Γqc

−δT βT (T̃ + T̂ − Text) dΓ−
∫

Ω

(∇ δT )Tλ∇(T̃ + T̂ ) dΩ,

where δT represents a weight function (δT = 0 on ΓT ). The continuous functions from the previous
relations are discretized by the finite element method in the following form

T̃ ≈ NTdT , T̂ ≈N [T ]T , δT ≈N [w]w, (2.46)

q ≈ N [q]q, Q ≈N [Q]Q, Text ≈N [Text]T ext, (2.47)

∇ T̃ ≈ BTdT , ∇ T̂ ≈ B[T ]T , ∇ δT ≈ B[w]w. (2.48)

In the above approximations, dT denotes the vector of unknowns nodal temperatures, T is the
vector of prescribed nodal temperatures, q is the vector of prescribed nodal fluxes, T ext is the
vector of prescribed ambient nodal temperatures, Q is the vector of sources in nodes, N stands
for the vector of aproximation functions, and B is the matrix of their gradients. Nodal values of
the weight function δT are in the vector w.

Approximation functions for continuous functions are usually identical, therefore the following
relationships are valid

NT = N [T ] = N [w] = N [Q] = N [q] = N [Text] , (2.49)

BT = B[w] = B[T ] (2.50)
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After substitution of the previous approximation to the Equations (2.44) to (2.50), the following
equation is obtained∫

Ω

(
−wTBT

TλBTdT −wTBT
TλBTT +wTNT

TNTQ (2.51)

−wTNT
TρcNT ḋT −wTNT

TρcNT Ṫ
)

dΩ−
∫

Γqp

wTNT
TNTq dΓ

+

∫
Γqc

(
−wTNT

TβTNTdT −wTNT
TβTNTT +wTNT

TβTNTT ext

)
dΓ = 0 ,

where the (˙) symbol denotes the time derivative. Vector w can be factored out

wT

(∫
Ω

(
−BT

TλBTdT −BT
TλBTT +NT

TNTQ

−NT
TρcNT ḋT −NT

TρcNT Ṫ
)

dΩ−
∫

Γqp

NT
TNTq dΓ (2.52)

+

∫
Γqc

(
−NT

TβTNTdT −NT
TβTNTT +NT

TβTNTT ext

)
dΓ

)
= 0 .

Then, the following notation can be adopted

K
[T ]
T =

∫
Ω

BT
TλBT dΩ, K

[Γ]
T =

∫
Γqc

NT
TβTNT dΓ,

CT =

∫
Ω

NT
TρcNT dΩ, (2.53)

f
[qp]
T =

∫
Γf

NT
TNT dΓ q, f

[qc]
T =

∫
Γt

NT
TβTNT dΓ T ext, f

[Q]
T =

∫
Ω

NT
TNT dΩ Q.

The balance Equation (2.52) is rewritten to the form(
K

[T ]
T +K

[Γ]
T

)
dT +CT ḋT = f

[Q]
T −

(
K

[T ]
T +K

[Γ]
T

)
T −CT Ṫ − f [qp]

T + f
[qc]
T , (2.54)

which can be modified into more concise form

KTdT +CT ḋT = fT , (2.55)

where additional notation is used

KT = K
[T ]
T +K

[Γ]
T (2.56)

fT = f
[Q]
T −

(
K

[T ]
T +K

[Γ]
T

)
T −CT Ṫ − f [qp]

T + f
[qc]
T . (2.57)

Equation (2.55) is a system of ordinary differential equations and its time integration is based on
the general trapezoidal rule [Hughes, 1987]. For the clarity, vectors and matrices will be written
without subscipt T .

ḋ = v (2.58)

dn+1 = dn + ∆tvn+α (2.59)

vn+α = (1− α)vn + αvn+1 , (2.60)
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where subscripts denote the time step. The system of Equation (2.55) has the similar form at
actual time step n+ 1

Kdn+1 +Cḋn+1 = fn+1 . (2.61)

If time approximations (2.58) to (2.60) are taken into account, the equation (2.61) leads to another
form

(C + α∆tK)vn+1 = fn+1 −Kdn − (1− α)∆tKvn . (2.62)

The predictor-corrector method can be used for the computer implementation, where the predictor
reads

d̃n+1 = dn + (1− α)∆tvn (2.63)

and the corrector has the form

dn+1 = d̃n+1 + α∆tvn+1 . (2.64)

With the help of the predictor and corrector, Equation (2.62) is slightly modified

(C + α∆tK)vn+1 = fn+1 −Kd̃n+1 . (2.65)

The system (2.65) contains time derivatives of the nodal values vn+1. This approach is called
v-form, which is not always hassle-free from the numerical point of view. Therefore additional
approach, called d-form, can be used. Time derivatives of nodal values are expressed from Equa-
tion (2.64) in the form

vn+1 =
1

α∆t
(dn+1 − d̃n+1) (2.66)

which is reasonable for α > 0 and ∆t > 0. Substitution of expression (2.66) to the balance
equation (2.65) leads to the form(

1

α∆t
C +K

)
dn+1 = fn+1 +

1

α∆t
Cd̃n+1 . (2.67)

In case of non-linear system of Equation (2.61), where material parameters are dependent on
the temperature field, the Newton-Raphson method [Bittnar and Šejnoha, 1996], [Crisfield, 1991]
has to be used in every time step. For example in the v form (2.65), the trial solution vn+1,0

of the system of equations is used for computation of the trial nodal values dn+1,0 which are
obtained from Equations (2.59) and (2.60). Substitution of the trial solution back to the system
of Equations (2.65) with actual matrices does not generally lead to equality. An iteration loop,
called the inner iteration loop, in every time step is based on residual which can be computed
from the relationship

rn+1,j = fn+1 −Kn (dn + ∆t(1− α)vn) (2.68)

− (Cn+1,j + ∆tαKn+1,j)vn+1,j ,
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where Cn+1,j and Kn+1,j denote the matrices evaluated for dn+1,j and j is the index of the inner
loop. Corrections of nodal time derivatives are computed from the equation

(Cn+1,j + ∆tαKn+1,j) ∆vn+1,j+1 = rn+1,j (2.69)

and new time derivatives are obtained

vn+1,j+1 = vn+1,j + ∆vn+1,j+1. (2.70)

Another approach how to solve the nonlinear algebraic Equations (2.61) comes from the equi-
librium of fluxes (computed and prescribed) in nodes, which is taken over from the mechanical
problems. This strategy is based on the equation

f int = f ext (2.71)

where vectors f int and f ext contain internal values and prescribed/computed values, respectively.
Both vector depend on time t, on the vector of unknown temperature d and on derivatives of
unknown temperatures with respect to time v. The vector f int expressed at actual time step tn+1

has the form

f int(dn+1,vn+1, tn+1) ≈ f int(dn,vn, tn) +
∂f int
∂d

∆dn +
∂f int
∂v

∆vn , (2.72)

where ∆dn and ∆vn are increments over ∆t = tn+1 − tn. Previous relation can be rewritten with
help of notation

Kn =
∂f int(tn)

∂d
, Cn =

∂f int(tn)

∂v
. (2.73)

in the new expression
Kn∆dn +Cn∆vn = f int(tn+1)− f int(tn) . (2.74)

There are two sets of relations

dn+1 = dn + ∆dn, vn+1 = vn + ∆vn (2.75)

and recalled Equations (2.59) and (2.60)

dn+1 = dn + ∆tvn+α, vn+α = (1− α)vn + αvn+1 . (2.76)

After substitution of (2.75) and (2.76) into expression (2.74)

(Cn + α∆Kn)vn+1 = f int(tn+1)− f int(tn) + (Cn −∆t(1− α)Kn)vn , (2.77)

where
f int(tn) = Kndn +Cnvn (2.78)

is applied. The new vector vn+1 is calculated from Equation (2.76), and the vector dn+1 is then
obtained. Due to nonlinearity in material properties, the equality

f int(tn+1) = f ext(tn+1) (2.79)

is generally not valid and the residuum is computed

Rn+1 = f ext(tn+1)− f int(tn+1) (2.80)
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The vector vn+1 corrections has to be evaluated from the relation

(Cn+1 + α∆tKn+1) ∆vn+1,j = Rn+1,j . (2.81)

The final vector vfin
n+1 is the sum of contributions from inner iteraton loop

vfin
n+1 = vn+1 +

∑
j

∆vn+1,j . (2.82)

The final equality is reached at the and of the inner iteration process

ffin
int(d

fin
n+1,v

fin
n+1, tn+1) = ffin

ext(d
fin
n+1,v

fin
n+1, tn). (2.83)

If the matrices C and K are updated in every inner step, the full Newton-Raphson method is
used. If the matrices are updated only once after every time step, the modified Newton-Raphson
method is used.

2.3 Coupled problem

2.3.1 Partially coupled approach

The coupled analysis is based on the equation of the mechanical problem (2.23)

Kudu = f ext,

and on the equation for the transport problem (2.55)

KTdT +CT ḋT = fT .

The thermal effect on the mechanical response is usually added in to the constitutive equation
(Hook’s law) relating the strains ε and stresses σ

σ = Du (ε− εT ) , (2.84)

where Du is the stiffness matrix of the material, ε is the vector of total strains, and the vector of
thermal strains, εT , depends on the thermal expansion coefficient, αT , and the difference of the
actual temperature T , and the initial temperature, T0,

εT = mTαT (T − T0), m = (1, 1, 1, 0, 0) . (2.85)

After the FEM discretisation, the right-hand side of the mechanical problem is extended by tem-
perature effect

Kudu = f ext + fTu (2.86)

where

fuT =

∫
Ω

BT
uDuεTdΩ . (2.87)

The above system of Equation (2.86) represents a partially coupled problem, so-called one way
coupled problem, where the mechanical problem is influenced by the heat transfer problem. For
the numerical solution, it is convenient to use a staggered algorithm, in which both transport
and mechanical analysis are solved simultaneously in time. The data from transport analysis are
transferred only to mechanical analysis. It means the heat transfer analysis is solved first, and then
in each time step, the temperatures are transferred to the mechanical part to compute thermal
strains. From the numerical point of view, the rate form of Equation (2.86) is more convenient

Kuḋu = ḟ ext + ḟuT (2.88)
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2.3.2 Fully coupled approach

If the mechanical material properties are influenced by temperature changes or the mechanical
response is non-linear, it is convenient to solve both transport and mechanical parts together in a
fully coupled analysis. In such a problem, the vector with thermal strains is split into two parts

fuT =

∫
Ω

BT
uDuεTdΩ =

∫
Ω

BT
uDuαTm

TNTdΩ dT −
∫

Ω

BT
uDuαTm

TNTdΩ dT0 , (2.89)

where the vector dT0 contains initial nodal temperatures. Merging of both problem (2.86) and
(2.55) together and applying of previous decomposition (2.89) lead to the system of equations for
the fully coupled problem(

Kuu KuT

0 KTT

)(
du
dT

)
+

(
0 0
0 CTT

)(
ḋu
ḋT

)
=

(
f ext + f 0

uT

fT

)
, (2.90)

where dT is the vector of nodal temperatures, and fT is the vector of prescribed nodal heat fluxes
and sources presented in Equation (2.56). The first equation in the system (2.90) expresses the
equilibrium condition while the second equation in this system of equation represents the heat
balance condition. The zero blocks in the heat balance equation determine the independence of
the heat transfer on the mechanical problem. On the other hand, the mechanical problem is
coupled with the heat transfer through coupling matrix KuT and vector f 0

uT resulting from the
first and the second part of the vector fuT in Equation (2.89), respectively.

KuT = −
∫

Ω

BT
uDuαTm

TNTdΩ , f 0
uT = −

∫
Ω

BT
uDuαTm

TNTdΩ dT0 . (2.91)

The matrixKuu is the stiffness matrix previously denotedKu, the matrixKTT is the conductivity
matrix KT , and the matrix CTT is the capacity matrix CT , respectively.

Slightly different system of equations is obtained when using the rate form for the mechanical
part (2.88) (

0 0
0 KTT

)(
du
dT

)
+

(
Kuu KuT

0 CTT

)(
ḋu
ḋT

)
=

(
ḟu
fT

)
. (2.92)

The numerical solution of the system of Equations (2.90) follows the v-form or d-form algorithms
presented for the transport problem by relations (2.65) to (2.67).

In the case of a more complicated coupled thermo-hygro-mechanical problem, the system may
have the form with non-zeros off-diagonal blocks Cuu CuT Cuϕ

CTu CTT CTϕ

Cϕu CϕT Cϕϕ

 ḋu
ḋT
ḋϕ

+

 Kuu KuT Kuϕ

KTu KTT KTϕ

Kϕu KϕT Kϕϕ

 du
dT
dϕ

 =

 fu
fT
fϕ

 , (2.93)

where the subscript u denotes the displacements, the subscripts ϕ denotes the relative humidity
and the subscript T denotes the temperature. The vectors du, dT , and dϕ contain unknown nodal
variables, the vectors fu, fT , and fϕ represent prescribed nodal forces and fluxes, the matrices
K with indices stands for the stiffness, conductivity and coupling matrices and the matrices C
with indices denote the capacity and coupling matrices. The vectors fu, fT , and fϕ are further
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split into three contributions. The vector fu is the sum of vectors fuu, fuT , fuϕ representing
contributions to the nodal forces from mechanical analysis, temperature changes, and humidity
changes. The meaning of other components is similar in the vectors fT and fϕ.

The system of differential equations (2.93) can be written more compactly in the form

C(d)ḋ+K(d)d = f . (2.94)

The dependency of the stiffness, conductivity, capacity, and coupling matrices on the attained
values of variables is explicitly denoted.

It has to be noted that the permanent recalculation of matrices K and C with concerning
actual nodal values is very computationally demanding. In such a case, the matrix of the system of
equations C(d)+∆tαTK(d) has to be always factorized, requiring additional computational time.
Experiences with numerical simulation show that the modified Newton-Raphson method, which
changes the system matrices only at the beginning of a new time step, is suitable for weak non-
linear problems. On the other hand, the full version of the Newton-Raphson method computing
matrices in each inner iteration step in each time step is the best choice for analyses with strong
non-linear dependency.

2.4 SIFEL Computer Code

Experiences with the implementation of numerical methods, material models, and tools for cou-
pled problems and parallel computing showed several contradicting requirements, namely in
commercial software. It was decided to start the development of the new open-source code
SIFEL [Kruis et al., 2021]. The acronym SIFEL was derived from SImple Finite ELements. The
original motivation for the development of the new code was the European project MAECE-
NAS (2001–2004). In this project, the program was successfully used for the solution of the
nuclear reactor vessel, and since then, it has been developed and expanded. This section describes
the SIFEL code’s philosophy, the code structure, used programming techniques, and data struc-
tures. More details about this software can also be found in references [Kruis et al., 2010] and
[Koudelka et al., 2010].

2.5 Philosophy of the code

SIFEL is the open-source code developed for nearly 20 years at the Department of Mechanics
of Civil Engineering Faculty of the Czech Technical University in Prague. The development of
the code was motivated by the European research project MAECENAS which dealt with the
assessment of properties of reactor vessels of nuclear power plants at the end of their service
life. The project was solved at several universities across Europe (Glasgow, Nantes, Padova,
Prague, and Sheffield), and the aim was to develop an extensible software for coupled hygro-
thermo-mechanical analysis. There were some computer codes for particular problems at involved
universities, but their connection or merging was complicated. Therefore, the development of a
new system was started. The following requirements were determined:

� Portability of the code. The universities had different hardware and software equipment.
Notably, the portability between different operating systems was required (Linux, Windows,
HP Unix).
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� Simple programming techniques. The members of the project were experts in the branch
of mechanical and transport processes with solid knowledge of programming languages but
were not professional programmers. Source codes should be understandable for all team
members as well as for new participants.

� Speed of program execution. The programming language should be compiled (FORTRAN,
C++) rather than interpreted (Java).

Comparing to FORTRAN 77 and FORTRAN 90 languages, C++ was selected as more portable
and comprehensive. Moreover, fast executable C++ compilers are other benefits. Sometimes, the
extensive usage of object-oriented programming techniques decreases clarity for new participants.
It was concluded that C++ language would be used without most object-oriented programming
features and concepts. From the object-oriented programming point of view, data abstraction and
encapsulation were found to be useful concepts and understandable for all project participants.
Data are joined together with essential functions, which initialize them and perform basic opera-
tions. Compared to the usual recommendations, the data was left public initially, and it can be
changed to private later depending on needs and experiences [Koudelka et al., 2011].

The easy extensibility of code is probably the most crucial requirement. Another essential need
is connected with code performance. These two basic requirements for the system are contradictory
because the very efficient implementation of a numerical method differs significantly from the
description of the method in textbooks. Therefore the orientation in the code is complicated.

The attention was rather concentrated on the suitable formulation of the problem and the
correct analysis. Detailed analysis of the system of nonlinear ordinary differential Equations (2.93)
reveals the similarity of particular submatrices. The stiffness and conductivity matrices (denoted
by K with appropriate subscripts) generally have the form

Kij =

∫
Ω

BT
i DijBjdΩ , (2.95)

where Bi and Bj denote the gradient matrices, Dij denotes the matrix of stiffness or conductivity
of the material and the indexes i and j substitute any of indexes u, T , p1 or p2. Similarly, the
capacity matrices (denoted by C with appropriate indexes) have generally the form

Cij =

∫
Ω

NT
i H ijN jdΩ , (2.96)

where N i and N j denote the matrices of base functions, and H ij denotes the matrix of material
parameters.

The part of SIFEL computer code dealing with coupled analyses is created for easy and clear
extensibility. When modeling, e.g., geomechanics, additional variables must be introduced in the
constitutive equations, and additional balance equations must be added to the system. In such a
case, the thermo-mechanical problem (2.90) extended by the pore pressures and capacity terms
results in the general form
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Cuu CuT Cup1 Cup2

CTu CTT CTp1 CTp2

Cp1u Cp1T Cp1p1 Cp1p2

Cp2u Cp2T Cp2p1 Cp2p2



ḋu
ḋT
ḋp1
ḋp2

 +

+


Kuu KuT Kup1 Kup2

KTu KTT KTp1 KTp2

Kp1u Kp1T Kp1p1 Kp1p2

Kp2u Kp2T Kp2p1 Kp2p2



du
dT
dp1
dp2

 =

=


fu
fT
f p1
f p2

 =


fuu + fuT + fup1 + fup2
fTu + fTT + fTp1 + fTp2
f p1u + f p1T + f p1p1 + f p1p2
f p2u + f p2T + f p2p1 + f p2p2

 , (2.97)

where the index u denotes the displacements, the indexes p1 and p2 are the pore pressures, and
T represents the temperature. The vectors du, dT , dp1 and dp2 contain unknown nodal variables.
The vectors fu, fT , f p1, and f p2 represent prescribed nodal forces and fluxes. The matrices K
denote the stiffness, conductivity, and the matrices C denote the capacity and coupling matrices.
The vectors fu, fT , f p1, and f p2 are further split into four contributions. The right-hand side
vectors f are the sum of several components, e.g., the vector fu is the sum of vectors fuu, fuT , fup1,
and fup2, which represent contributions to the nodal forces from mechanical analysis, temperature
changes, and pore pressures.

The solution of the system of Equation (2.97) directly offers the instruction for efficient im-
plementation. The implementation of the coupled hygro-thermo-mechanical problems is based on
three independent modules. The first module, MEFEL, is a separate computer code for mechanical
analysis that can stand alone. This module can deal with pure mechanical analyses. It assem-
bles submatrices Kuu,Cuu, and subvector fuu. The second module, TRFEL, is an independent
computer code for heat and moisture transfer, which can also be used separately. It assembles
the submatrices KTT , KTp1 , KTp2 , Kp1T , Kp1p1 , Kp1p2 , Kp2T , Kp2p1 , Kp2p2 , and subvectors
fTT , fTp1 , fTp2 , f p1T , f p1p1 , f p1p2 , f p2T , f p2p1 , f p2p2 . The coupling between the mechanical and
transport part is implemented into the third module, METR, which deals with the off-diagonal
terms in the coupled problem. This module assembles the submatrices KuT , Kup1 , Kup2 , KTu,
Kp1u, Kp2u, and subvectors fuT , fup1 , fup2 , fTu, f p1u, f p2u.

At this time, many merging software concepts can be found in the literature, which consist of
combinations of the existing computer codes and the data exchanges among them. Unfortunately,
they result in staggered algorithms, and they cannot attain fully coupled analysis. In the SIFEL
concept, the merging of the whole other parts of the code is not proceeding, but suitable sub-
routines from particular parts are used. Additionally, new subroutines dealing with the coupling
terms had to be implemented. For an illustration of the merging complexity, the numbers of lines
of the source code are summarized. The MEFEL code contains approximately 225100 lines, the
TRFEL code contains 173800 lines, and the METR code contains 50900 lines. The number of
lines of source code in METR is higher than the usual amount of lines in the typical merging
code. On the other hand, it enables staggered and fully-coupled analysis, and the resulting code
is compiled, therefore, very fast.

The additional advantage stems from the fact that any improvement of the mechanical or
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transport module is automatically projected to the code for coupled problems. It is also very
convenient for developers who can deal with one part of the whole system only.

The program can solve stationary and non-stationary, linear and nonlinear problems of heat
and moisture transfer as well as linear and nonlinear statics, eigenvibrations, dynamics, and time-
dependent problems with neglected inertial forces. Various types of finite elements can model a 2D
and 3D domain. In the SIFEL program, there are bar, triangular, quadrilateral, tetrahedron, and
hexahedron elements implemented. Both types of approximation functions, linear and quadratic,
can be used. Other features, such as the sequential construction modeling or parallel version of
the code, can be found in references [Kruis et al., 2021] and [Koudelka et al., 2011].

2.6 Code structure

The code is split into independent parts that deal with a single physics problem. The part dealing
with mechanical analysis is denoted MEFEL; the part dealing with transport processes is denoted
TRFEL. There is also part GEFEL, which contains comprehensive tools needed in connection with
the finite element method. The link of the mechanical part and the transport part is implemented
in an additional part METR.

Let the matrix K defined in Equation (2.93) be assumed. It can be split into submatrices
separated by the lines

K =


Kuu KuT Kup1 Kup2

KTu KTT KTp1 KTp2

Kp1u Kp1T Kp1p1 Kp1p2

Kp2u Kp2T Kp2p1 Kp2p2

 (2.98)

The diagonal block Kuu is the stiffness matrix, and it represents mechanical analyses only. This
submatrix is assembled in the MEFEL module. The second diagonal block KTT KTp1 KTp2

Kp1T Kp1p1 Kp1p2

Kp2T Kp2p1 Kp2p2

 (2.99)

is the conductivity matrix, and it represents the transport process, where, e.g., heat and moisture
are assumed. This submatrix is assembled in the TRFEL module. Two off-diagonal submatrices(

KuT Kup1 Kup2

)
(2.100)

and  KTu

Kp1u

Kp2u

 (2.101)

describe the coupling between mechanical behavior and transport processes, and they are assem-
bled in the METR module.
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2.6.1 Structure of MEFEL, TRFEL and METR

For each module (MEFEL, TRFEL, METR), the data describing the given problem are split into
five large classes.

� probdesc - class containing the problem description,

� top - class including data relating finite element mesh,

� mat - class including data describing materials used,

� crsec - class representing data for cross-sections,

� bclc - class containing data representing boundary conditions and loadings.

The names of classes differ for particular problems by a postfix created from the problem name
abbreviation. The data of these classes are necessary almost everywhere in the code, and this led
to make them global objects. Thus, each class has one instance that is a global variable. This
approach reduces the number of parameters passed to functions. In addition to that, each module
contains global objects connected with the system matrices and vectors of unknowns.

The class probdesc contains attributes describing the solved problem. There is a group of
attributes describing the type of problem, quantities computed, and solver of the systems of
linear equations. Also, there is an object of class hdbcontr, which controls storage/re-storage of
time steps to/from the disk. In the case of nonlinear problems, there are also objects of classes
timecon and nonlinman. The timecon holds data controlling time steps while the nonlinman

contains control parameters for the Newton-Raphson or arclength methods. The probdesc class
has data members public because they are often used for reading, and they are seldom changed.

The class top contains topological data connected with the mesh of elements. It includes
three essential arrays of objects of classes node, element, and edge. The class node contains data
intended for the node, such as coordinates, the DOFs, and code numbers of particular DOFs. The
class element provides nodal connectivity of the given element, type of material and cross-section,
code numbers, etc. Similarly, the edge contains data describing boundaries. The top also includes
arrays of adjacent nodes, elements, and distances of integration points.

The array of objects of intpoints is the most important data member of the class mat. The
class intpoints contains intrinsic values computed in the particular integration points such as
strains, stresses, fluxes, gradients, and other quantities. There are also arrays of initial conditions
for integrations points, the array of values of unknowns from coupled problems, etc. For example,
in the mechanical part, the mechmat class contains arrays of temperature and moisture values
at integration points. The mat class also has arrays of objects of supported material types,
i.e., implemented material models. Each material type has one object per one set of material
parameters.

The class crsec contains arrays of objects for particular cross-section types. There are also
methods for retrieving basic cross-section parameters such as thickness or area.

The bclc class holds data about boundary conditions that are arranged in particular load
cases. Several load cases can be defined in static and also in time-dependent problems. Every
load case can contain several sub-load cases due to better control of the time-dependent load.
The boundary conditions can be specified for the given load case at nodes, elements, edges, and
surfaces. Thus, bclc class contains the array of objects of the loadcase class, in which the
boundary conditions are stored, array of initial conditions, and several auxiliary data members.
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1 class node{
2 long ndofn;

3 long *cn;

4 double x,y,z;

5 };

Table 2.1: Class node

The bclc class has only several methods for data manipulation, and the loadcase class provides
most of the functionality.

2.6.2 Data Storage

Two sets of data are needed in the case of problems solved by the finite element method. There
is a set of data describing finite element mesh, i.e., node coordinates and node connectivity. The
second set contains values of state and derived variables (displacements, strains, stresses, plastic
strains, temperatures, heat fluxes, etc.).

Finite element mesh

Two arrays of objects describe finite element mesh. One array contains objects of the class node,
and the second array contains objects of the class element. The class node represents a node
of finite element mesh. The class definition is in Table 2.1. It contains node coordinates (line
4), the number of degrees of freedom (line 2), and the ordering of DOFs in the whole problem
(line 3). The class element represents a finite element, and its definition is in Table 2.2. It does
not take into account whether the element is one, two, or three dimensional and does not care
about the element shape (triangular, quadrilateral, etc.). Particular standalone objects provide all
functionality connected with the FEM with implemented FE routines. These individual elements
are referred from the class element by et data member. The class element contains the number
of nodes defining the element (line 2), the number of DOFs per element (line 3), the number of
Lagrange multipliers (if they are needed on line 4), the list of nodes (line 5), the indicator whether
the code numbers are defined on the element (line 6), the list of code numbers (line 7), the list of
integration points located on the element (line 8), the number of integration points defined on the
element (line 8), the number of the first integration point (line 9), and the element type identifier
(line 10).

2.6.3 State variables

State variables are stored in integration points. The definition of integration point in the mechan-
ical analysis is summarized in Table 2.3. The definition of integration point in transport processes
is similar, but it contains arrays of fluxes and gradients. The integration point includes the type of
material model (line 2), the number of components of strain/stress tensor (line 3). In the case of
inelastic problem, some auxiliary values have to be stored. For example, in the analysis based on
plasticity theory, the plastic strains and plastic multipliers have to be saved. For such purposes,
the array eqother is defined. Unfortunately, one array is not enough because equilibrated values
and trial values must be stored during global equilibrium iteration. Therefore, the array eqother
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1 class element{
2 long nne;

3 long ndofe;

4 long nmult;

5 long *nodes;

6 long cne;

7 long *cn;

8 long nip;

9 long iip;

10 elemtype et;

11 };

Table 2.2: Class element

1 class intpoints{
2 mattype tm;

3 long ncompstr;

4 long ncompeqother;

5 long ncompother;

6 double *stress;

7 double *strain;

8 double *other;

9 double *eqother;

10 double *nonloc;

11 };

Table 2.3: Class intpoint

contains equilibrated quantities, while the array other contains their trial values. The class com-
prises the number of components of the array eqother (line 4), the number of components of the
array other (line 5), the array of the stress components (line 6), the array of the strain components
(line 7), the array of other values (line 8), the array of eqother values (line 9), and the array of
nonlocal values (line 10).

2.6.4 Data access

Access to data can be described using an example dealing with stiffness matrix assembling. The
function assembling global stiffness matrix contains a loop over all finite elements in a mesh. Each
element calls its function for computation of the stiffness matrix. The typical form of function
which computes the stiffness matrix of a single element is in Table 2.4. The number of nodes nne is
known for each element, see 2.2. The array of node numbers nodes is allocated on line No. 1. The
function give elemnodes of the class top assembles appropriate node numbers to the array nodes

(line 2). The function give thickness of the class crsec assembles the thicknesses to the array
t. The function gauss points(gp,w,nip) assembles the coordinates of the integration points
to the array gp and the weights to the array w. ipp denotes the number of the first integration
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1 ivector nodes(nne);

2 Mt->give elemnodes (eid,nodes);

3 vector t(nne);

4 Mc->give thickness (eid,nodes,t);

5 vector w(nip);

6 vector gp(nip);

7 gauss points (gp,w,nip);

8 ipp=Mt->elements[eid].ipp;

9 for (i=0;i<nip;i++){
10 geom matrix (gm,x,y,gp,i,jac);

11 Mm->matstiff (d,ipp);

12 bdbjac (sm,gm,d,gm,jac);

13 ipp++;

14 }

Table 2.4: Function stiffness matrix

point on the current element (line 8). There is a loop over the number of integration points
nip. The function geom matrix(gm,x,y,gp,i,jac) assembles the strain-displacement matrix,
function matstiff(d,ipp) of the class mechmat assembles the stiffness matrix of the material and
the function bdbjac(sm,gm,d,gm,jac) of the current element computes matrix product BTDB
(line 12). The number of the integration point is incremented on line No. 13.

2.6.5 Data Transfer

The crucial part for coupled analyses is the data transfer among all modules. In the staggered
algorithm, functions trfel mefel() and mefel trfel() transfer state variables from TRFEL to
MEFEL and MEFEL to TRFEL, respectively. In the fully coupled algorithm, the code is com-
pleted by four functions trfel metr(), metr trfel(), mefel metr(), and metr mefel() trans-
ferring data between TRFEL and METR, and between MEFEL and METR. The current SIFEL
version has three types of finite element meshes using the same nodes and elements numbering
in all modules. Transport and mechanical parts can have polynomial approximation functions of
different degrees, where linear and quadratic functions are the most used. While, the coupling -
superior part adopts approximation functions from inferior MEFEL and TRFEL parts.

There are several possibilities to transfer state variables:

� by nodal values, e.g., in function trfel mefel by nodes(), where quantities are copied to
nodes from the closest integration points at the particular TRFEL elements and then passed
to MEFEL elements which approximate them to the MEFEL integration points;

� by nodal values, e.g., in trfel mefel by nodes comp(), where nodal values are computed
directly at particular TRFEL element nodes and then passed to MEFEL elements which
approximate them to the MEFEL integration points;

� by integration points, e. g, in function trfel mefel by aip(Mm->tnip, MTipmap) which
computes/passes coupling data from TRFEL to MEFEL. Data are taken from the auxil-
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iary integration points in TRFEL and stored in MEFEL to the nonmechq array for non-
mechanical quantities;

� by integration points, e. g, in the function trfel mefel copyip() which transfers TRFEL
quantities to MEFEL as nonmechanical quantities required in MEFEL. In this case, the
meshes must be identical in both MEFEL and TRFEL modules, and individual values are
copied between corresponding integration points;

The same strategy is also used among all parts - MEFEL, TRFEL, and METR.
The universal but the most challenging strategy of the data transfer for the future work, which

uses benefits of the mesh adaptivity problems, is the solution of three independent finite element
meshes transferring values via the global coordinate system and finite element approximation
functions.

2.6.6 Extensibility

The code extensibility can be illustrated with the help of the conductivity matrix assembling for
coupled problems with many variables. The matrix for heat and moisture transfer has the form
in Equation (2.99), where three unknown functions are used in the model. These unknowns are
temperature T , pore pressure p1, and pore pressure p2. Table 2.5 shows a part of the code which
computes and assembles the conductivity matrix of one finite element. ntm denotes the number
of unknown functions. In the case of matrix (2.99), ntm=3. The third row in Table 2.5 represents
subroutine, which computes a submatrix defined by equation(2.95). The matrix is stored in lkm.
Appropriate row and column indexes are obtained by the subroutine codnum (lines 4 and 5), and
they are stored in rcn and ccn. The submatrix (2.95) is added to the conductivity matrix of a
finite element, which is stored in km. Further, the element matrix is localized into the matrix of the
system of algebraic equations. This subroutine shows that extensibility is ensured, and additional
state variables lead to the increase of the variable ntm.

1 for (i=0;i<ntm;i++){
2 for (j=0;j<ntm;j++){
3 conductivity matrix (i,eid,i,j,lkm);

4 codnum (rcn,i);

5 codnum (ccn,j);

6 mat localize (km,lkm,rcn,ccn);

7 }
8 }

Table 2.5: Loop for assembling of the conductivity matrix
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Chapter 3

Thermo-mechanical analysis of nuclear
reactor containment

The numerical solutions of coupled problems are demonstrated by three real-world engineering
problems. The first numerical example is the analysis of the nuclear reactor containment wall
under thermal loading. It is a modern special concrete structure with the highest demands on
safety, service life and reliability. The simulation of the impact of temperature changes during the
service is based on staggerred approach combining heat transfer analysis with concrete creep and
damage mechanical models.
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3.1 Analysis of structural shrinkage and creep in concrete

The analysis of structural creep in concrete comes out from the Boltzmann principle of super-
position. Considering uniaxial stress σ [Bažant, 1988], the expression (2.1) is reduced into the
following form

εtot(t) = εσ + ε0, (3.1)

where εσ is the strain depending on the stress state, ε0 is the strain due to effects that are not
connected with the applied mechanical load.

Experimental measurements in concrete structures and specimens showed that under service
load levels (σ < 0.4fck, where fck is the compressive strength), a linear relation can be adopted
between stress and strain (linear creep). In cases that the Boltzmann principle of superposition
can be used and the stress σ varies in time, the overall strain at time t due to variable stress is a
sum of partial strains caused by the particular constant stress increments ∆σi applied at time τi

εtot = J(t, t0)σ(t0) +

∫ t

t0

J(t, τ)dσ(τ) + ε0. (3.2)

The compliance function J(t, τ) of linear viscoelastic materials represents the strain at time t due
to a unit stress σ = 1 applied at time τ . Models based on extensive experiments are top-rated
in the engineering community. The most useful one is Bazant’s compliance function known as B3
model, which originates from the set of tests carried out in the 1970s [Baweja and Bažant, 1995].

3.1.1 Discrete model

The stress σ is assumed to be continuous in time and differentiable. The integral constitutive
relation (3.2) can be transformed into a differential one. This step requires a suitable representation
of the kernels J(t, τ). From the numerical point of view, the degenerate kernels (in terms of the
Dirichlet-Prony series) are the most convenient choice

J(t, τ) =
M∑
µ=1

1

Dµ(τ)
(1− exp [yµ(τ)− yµ(t)]) , (3.3)

where yµ = (t/τµ)qµ , τµ are the retardation times and M is the number of units in the Dirichlet-
Prony series. The coefficient qµ is introduced to reduce the number of terms in the expansion,
and for concrete, it is usually set to qµ ≈ 2/3. Explicit expressions for Dµ(τ) are available for the
most used functions J . On the other hand, they can be directly derived from the experimental
data using a certain optimization technique, such as the least square method, genetic algorithms
and others. Retardation times τµ for J must satisfy certain rules for correct calculations. Time τ1

should be set to a small value (1× 10−9 days), so that the first term of the Dirichlet-Prony series
(3.3) is close to 1

D1
, and thus D1 expresses the instantaneous compliance realistically. Remaining

values should be uniformly distributed on a logarithmic time scale, i.e., τµ = 101/qµτµ−1, for
µ = 2, 3, . . . ,M . Finally, τM should meet the condition τM > 0.5tmax, where tmax is the upper
bound on the time interval in which the response of the structure is analyzed. If the lower bound
tmin is contained in this interval, the condition τ2 < 3tmin has to be checked.

In the case of derivation of retardation coefficients from experimentally obtained data, the
least square method leads to the system of linear algebraic equations. Retardation coefficients at
time t0 can be calculated by minimization of the function
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F =
s∑

k=1

[ M∑
µ=1

[ 1

Dµ(t0)
(1− exp[yµ(τ)− yµ(t)])− J(tk, t0)

]2

. (3.4)

J(tk, t0) denotes a set of discrete experimental measured data or suitable approximation of the
creep function at times tk in the given interval. From derivatives of Equation (3.4) with respect
to Bµ(t0) = 1/Dµ(t0), µ = 1, 2, . . . ,M , the system of equations is obtained in the form


a11 a12 . . . a1M

a22 . . . a2M

. . .
aMM




B1

B2

. . .
BM

 =


p1

p2

. . .
pM

 , (3.5)

where

aij =
s∑

k=1

[1− exp(yi(t0)− yi(tk))][1− exp(yj(t0)− yj(tk))], (3.6)

pi =
s∑

k=1

[1− exp(yi(t0)− yi(tk))]J(tk, t0). (3.7)

Figure 3.1: Kelvin-Voigt chain model

The total strain is calculated as a sum of individual strains, εµ, corresponding to the links
of the Kelvin-Voigt chain model (see Figure 3.1), which is a representation of the degenerate
kernels (3.3). In this case, the direct solution can be obtained based on the compliance function
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giving the following set of equations

ε(t) =
M∑
µ=1

εµ(t) + ε0(t), (3.8)

εµ(t) =

∫ t

0

dσ(τ)

Dµ(τ)
− γµ(t), (3.9)

γµ(t) = exp
[
− yµ(t)

] ∫ t

0

exp[yµ(τ)]

Dµ(τ)
dσ(τ), (3.10)

dσ(τ) =
dσ(yµ)

dyµ(t)

dyµ(t)

dτ
dτ. (3.11)

These formulas assume that σ is a continuous function being equal zero at the beginning of
loading (t = 0). The hidden variables γµ include the time history of loading, and it can be
eliminated from Equations (3.9)) and (3.10). Differentiation of Equations (3.9) and (3.10) with
respect to yµ(t), yields

dγµ(t)

dyµ(t)
+ γµ(t) =

1

Dµ(t)

dσµ(t)

dyµ(t)
, (3.12)

dεµ(t)

dyµ(t)
= γµ(t). (3.13)

The numerical solution is based on dividing the time axis into intervals with the length ∆ti, where
only the values of hidden variables at time ti−1 have to be known in order to get the values at
time ti. In the first step, these values are equal to zero. Assuming that at the beginning of
the i-th interval (ti−1, ti), the strain ε(ti−1) is known then the hidden variables γµ(ti−1) for each
element of the Kelvin-Voigt chain (Equation (3.10)) can be numerically integrated under certain
assumptions. Denoting Dµ = Dµ(ti−1 + ∆ti

2
), after some manipulations γµ(ti) can be expressed as:

γµ(ti) = γµ(ti−1)e−∆yµ +
1

Dµ

(1− e−∆yµ)

∆yµ
∆σ. (3.14)

The strain increment in the µ-th element of the chain can be expressed as

∆εµ =
∆σ

Dµ

(−γµ(ti)) = γµ(ti−1)
∆σ

Dµ

(
1− (1− e−∆yµ)

∆yµ

)
+ γµ(ti−1)(1− e−∆yµ). (3.15)

The increments of strains, hidden variables and stresses can be written in the contracted form as

∆εµ = εµ(ti)− εµ(ti−1),

∆γµ = εµ(ti)− γµ(ti−1),

∆σµ = σµ(ti)− σµ(ti−1). (3.16)

The total strain increment is obtained by the sum of individual contributions from links of the
chain

∆εtot = ∆σ
M∑
µ=1

1

Dµ

(
1− (1− e−∆yµ)

∆yµ

)
+

M∑
µ=1

γµ(ti−1)(1− e−∆yµ) + ∆ε0. (3.17)
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Setting the stiffness Ei for the i-th interval 〈ti−1, ti〉

1

Ei

=
M∑
µ=1

1

Dµ

(
1− (1− e−∆yµ)

∆yµ

)
(3.18)

and

∆εc =
M∑
µ=1

γµ(ti−1)(1− e−∆yµ) (3.19)

allows for the conversion of Equation (3.17) into the final expression for the incremental constitu-
tive relation based on the Dirichlet-Prony series

∆σ = Ei (∆εtot −∆εc −∆ε0) , (3.20)

which can be generalized into 3D

∆σ = EiD̂ (∆εtot −∆εc −∆ε0) , (3.21)

where

Ĉ = D̂
−1

=


1 −ν −ν 0 0 0

1 −ν 0 0 0
1 0 0 0

2(1 + ν) 0 0
2(1 + ν) 0

2(1 + ν)

 . (3.22)

3.1.2 Continuous model

As mentioned in the previous section, the total strain is calculated as a sum of individual strains
corresponding to the Kelvin-Voigt chain’s links. A very efficient method for computer simulations
is to introduce the continuous Kelvin chain model with an infinite number of units and retar-
dation times with infinite close spacing [Bažant and Xi, 1995]. This approach was proposed by
[Baweja and Bažant, 1995] for B3 compliance function with log-power law

J(t, τ) = q1 + C(ξ), (3.23)

where

C(ξ) = q3ln

[
1 +

(
ξ

λ0

)n]
, (3.24)

with parameters q3, λ0 = 1 and n, is given by the Dirichlet series

C(ξ) =
M∑
µ=1

Bµ

(
1− e−ξ/τµ

)
, Bµ =

1

Dµ

, (3.25)
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where ξ = t− τ ; t = time (age of concrete); τ = time when the loading was applied and Dµ is the
elastic modulus of the µ-th Kelvin unit. Creep compliance function C(ξ) defined by relation (3.24)
can be approximated in the continuous form

C(ξ) ≈
∫ ∞

0

L∗(τ)(1− e−ξ/τµ)dτ. (3.26)

Setting L∗(τ) = L(τ)/τ , Equation (3.26) reads

C(ξ) =

∫ ∞
0

L(τ)(1− e−ξ/τµ)d(lnτ), (3.27)

where L(τ) denotes the continuous retardation spectrum. It has the same meaning in the logarith-
mic scale as Bµ in the actual time scale. Derivation of L(τ) from the known compliance function
of the material originates from a very efficient general method developed by [Tschoegl, 1971] and
later improved by [Tschoegl, 1989].

Using Equations (3.26) and (3.27) and setting τ = 1/ζ with d(lnτ) = −d(lnζ), the creep
compliance function has the form of

C(ξ) =

∫ ∞
0

L(ζ−1)(1− e−ξζ)ζ−1dζ =

C(ξ) =

∫ ∞
0

L(ζ−1)ζ−1d(ζ)−
∫ ∞

0

L(ζ−1)e−ξζζ−1dζ. (3.28)

Equation (3.28) can be condensed in the form

C(ξ) = f(0)− f(ξ), (3.29)

where f(ξ) represents

f(ξ) =

∫ ∞
0

L(ζ−1)e−ξζζ−1dζ, (3.30)

where f(ξ) is the Laplace transform of the function L(ζ−1)ζ−1, and ξ is the transformed variable.
According to Bazant’s recommendation [Bažant and Xi, 1995], the Laplace transform is inverted
by using the inversion operator

Fk,ζ [f(ξ)] =
(−1)k

k!

(
k

ζ

)k+1

f (k)

(
k

ζ

)
(3.31)

with the property

lim
k→∞

Fk,ζ [f(ξ)] = lim
k→∞

[
(−1)k

k!

(
k

ζ

)k+1

f (k)

(
k

ζ

)]
= L(ζ−1)ζ−1, (3.32)

where f (k) is k-th derivative of function f (f(0) is constant). For k ≥ 1,

L(τ) = − lim
k→∞

(−kτ)k

(k − 1)!
C(k)(kτ). (3.33)
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The approximate spectrum of k-th order is obtained by using a finite value of k. Employing
Equations (3.30), (3.29) and (3.24), the transform is written as

f(ξ) = q3ln(1 + ξn)−
∫ ∞

0

L(ζ−1)ζ−1dζ, (3.34)

Assuming k = 3, Equations (3.33) yields the approximation

L(τ) =

[
−2n2(3τ)2n−3[n− 1− (3τ)n]

[1 + (3τ)n]3

]
(3τ)3

2
q3

+

[
n(n− 2)(3τ)n−3[n− 1− (3τ)n]− n2(3τ)2n−3

[1 + (3τ)n]2

]
(3τ)3

2
q3. (3.35)

For numerical computations, ln(τ) is subdivided into time intervals ∆ln(τ) = ln10∆(log(τµ)) and
the finite sum approximates the integral in Equations (3.26) and (3.27)

C(ξ) =
M∑
µ=1

L(τµ)
(
1− e−ξ/τµ

)
ln10∆(log(τµ)), or C(ξ) =

M∑
µ=1

Bµ

(
1− e−ξ/τµ

)
, (3.36)

where

Bµ = L(τµ)ln10∆(log(τµ)). (3.37)

L(τµ) is given by relation (3.35) and ∆(log(τµ) is equal to time interval between two adjacent
Kelvin units in the logarithmic scale [Bažant and Xi, 1995]. It is recommended using high order
approximation with high order derivatives of function Ck(kτ) for more complex expression of the
compliance function.

Comparison of discrete and continuous creep model

The continuous retardation spectrum has a significant contribution to the speedup of numerical
computations. Assuming the variable character of loading is applied to a structure, it is necessary
to find a minimum of function (3.4) in every step for each integration point. It leads to the
solution of the high number of equation systems, and consequently, the calculation is slowed down
according to the increasing number of elements.

Table 3.1 summarizes computational times of elastic modulus for rectangular 2D finite element
mesh with the various number of finite elements for the discrete and continuous model, respectively.
The constant speed up of computational time is evident from the table.

Number of elements (num. of int. points) 100(400) 1000(4000) 10000(40000)

Discrete Kelvin chain model 0.69s 6.95s 69.37s
Continuous Kelvin chain model 0.03s 0.33s 3.33s
Speed up 23 times 21 times 21 times

Table 3.1: Speed up of computer calculation for finite element meshes with various number of
elements
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3.1.3 B3 creep model

As the most popular, Bazant’s B3 model with logarithmic-power law was selected for implemen-
tation in SIFEL package

J(t, τ) = q1 + q2Q(t, τ) + q3ln

[
1 +

(
t− τ
λ0

)n]
+ q4ln

( t
τ

)
, (3.38)

where J(t, τ) is the compliance function at time t due to a unit stress σ = 1 applied at time τ . The
material parameter q1 is the instantaneous strain due to unit stress. The term with the coefficient
q2 represents the aging viscoelastic compliance, q3 is the non-aging viscoelastic compliance, and
q4 stands for flow compliance. The coefficient λ0 is almost equal to 1.0, and Q(t, τ) is a binomial
integral. A detailed description of all coefficients can be found, e.g., in [Baweja and Bažant, 1995].

Moisture and temperature effects

Proper modeling of concrete structures exposed to temperature and moisture changes should cover
three complex phenomena in concrete creep (solidification theory model [Bažant et al., 2004]):

� The aging of concrete, which is manifested by a significant decrease of creep with the age at
loading is of two types:

– Short-term chemical aging, which ceases at room temperature after about a year. It
is caused by the fact that new solids are produced by the slowly advancing chemical
reactions of cement hydration and deposit (in an essentially stress-free) on the walls of
capillary pores.

– Long-term non-chemical aging, manifested by the fact that the decrease of creep with
the age at loading continues unabated even for many years after the degree of hydration
of cement ceased to grow.

� The drying creep effect, also called the stress-induced shrinkage or Picket effect. It is a
transient effect based on the fact that the apparent creep during drying is much larger than
the basic creep while the creep after drying is much smaller than basic creep. There is an
apparent mechanism manifested by apparent additional creep due to microcracking and a
true mechanism that resides in the nanostructure.

� The transitional creep, which represents a transient increase of creep after a temperature
change, both heating and cooling. In the case of cooling, the transient increase is of the
opposite sign than the final change in creep rate after a steady-state lower temperature has
been regained. Similarly to drying creep effect, there are two analogous mechanisms:

– An apparent macroscopic mechanism, due to thermally induced microcracking and
similar to drying creep; and

– A nanoscale mechanism due to changes in the level of microprestress caused by change
of chemical potential of nanopore water with a temperature change.

The effect of temperature on concrete creep is twofold [Bažant et al., 2004], generated by two
different mechanisms:
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� A temperature increase accelerates the bond breakages and restorations causing creep, in-
creasing the creep rate.

� The higher the temperature accelerates the chemical process of cement hydration and, thus,
the aging of concrete, which reduces the creep rate.

Usually, the former effect prevails, and the overall effect of temperature rises in an increase of
creep.

Moisture changes have a similar effect on the aging of concrete [Bažant et al., 2004]. The rate
of hydration and creep decrease with decreasing relative humidity ϕ, and when ϕ approaches 0.3,
the rate of aging is almost zero.

The special time quantities are applied to the creep model:

� Reduced time tr characterizing the changes in the rate of bond breakages and restoration
on the microstructural level:

tr(t) =

∫ t

0

ψ(τ)dτ ≤ t, (3.39)

where

ψ(t) = ψT (t)ψϕ(t), (3.40)

ψT (t) = exp

[
Qv

R

(
1

T0

− 1

T

)]
, (3.41)

ψϕ(t) = αϕ + (1− αϕ)ϕ2(t), (3.42)

where T is the absolute temperature, T0 denotes the reference temperature, ϕ is the relative
humidity in the pores of cement paste, R stands for the gas constant, Qv is the activation
energy for the viscous processes, and αϕ is a material parameter that has to be determined
experimentally. Concerning a large set of experiments, Bazant ([Bažant et al., 2004]) deter-
mined the following parameters T0 = 294 K, Qv/R = 5000 K and αϕ = 0.1.

� Equivalent time te (equivalent hydration period or maturity), which indirectly characterizes
the degree of hydration (te ≥ t):

te(t) =

∫ t

0

β(τ)dτ, (3.43)

where

β(t) = βT (t)βϕ(t), (3.44)

βT (t) = exp

[
Qh

R

(
1

T0

− 1

T

)]
, (3.45)

βϕ(t) = {1 + [aϕ − aϕϕ(t)]4}−1, (3.46)

where Qh is the activation energy, Qh/R = 2700 K, and aϕ = 5.
The effect of temperature and humidity changes (structural thermal expansion and shrinkage)

at zero stress can be expressed in strain rates:
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� thermal expansion rate

ε̇t = αṪ , (3.47)

� drying shrinkage rate

ε̇sh = kϕ̇ (3.48)

where k = {k11, k22, k33, k23, k31, k12}T is the incremental shrinkage coefficient vector, which de-
pends on ϕ, T and te, and α = {α11, α22, α33, α23, α31, α12}T is the thermal expansion coefficient
vector.

Providing that shrinkage and thermal expansion are independent of stress, they are assumed
in the form

k = ε0
shψm

T, α = α0mT, (3.49)

where (−ε0
sh) = 0.0002 ÷ 0.001 and α0 are empirical constants, and (−ψ) = E(t0)/E(te)3ϕ

2 for
relative humidity 0.4 ≤ ϕ ≤ 0.98.

In the presence of stress, the shrinkage and thermal expansion coefficient vectors are approxi-
mated as linear functions of the stress vector [Bažant and Chern, 1985],
σ = {σ11, σ22, σ33, σ23, σ31, σ12}T as

k = ε0
shψ(mT + rσsign(Ḣ)), α = α0(mT + ρσsign(Ḣ)), (3.50)

where Ḣ = ϕ̇ + cṪ (c being a non-negative constant). Empirical coefficients normally attain the
values r = (0.1 ÷ 0.6)/ft (MPa−1), ρ = (1 ÷ 2)/ft (MPa−1), where ft is the tensile strength.
In [Bažant, 1988], Equations (3.50) are simplified by considering c → 0 in case of k, to get
sign(Ḣ) = sign(ϕ̇), and by setting c → ∞ in case of α, thus yielding sign(Ḣ) = sign(Ṫ ). A
general linear dependence (3.50) would also include terms proportional to σmean = 1

3
σTmT.

Generalization into 3D and including incremental form of shrinkage ∆εsh = k∆ϕ and thermal
dilatation ∆εt = α∆T , the incremental constitutive equation based on the Dirichlet - Prony series
is obtained

∆σ = EiD̂
(
∆ε− k∆ϕ−α∆T −∆εc −∆εd

)
. (3.51)

3.2 Damage Models

Concrete belongs to quasi-brittle materials. In such materials, exceeding a certain strain level
leads to the evolution of defects such as microcracks and microvoids. If the growth of strains
continues, microcracks can localize into a large discrete crack while the progression of the rest
microcracks stops. The process is called the localization of inelastic strains. It can be described
by a variety of models depending on the concept of yielding.
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3.2.1 Scalar isotropic damage model

The scalar isotropic damage model is one of the simplest models of continuum damage me-
chanics. More details about the model can be found in [Lemaitre and Chaboche, 1994] and
[Skrzypek and Ganczarski, 1999]. The damage models consist in concepts of virgin, damaged
and pseudo-undamaged states of material. The material is assumed to be at virgin state when
no defects are present which corresponds to elastic state. In a one-dimensional problem, the bar
element is subjected to increasing uniaxial stress. The evolution of defects starts at a certain
level of strain. A bar element’s cross-section area is denoted by A at the virgin state, and let Ad
denote the area of defects. In the damaged state, the nominal stress σ is assumed acting on the
original cross-section area A while in the pseudo-undamaged state, the effective stress σ̃ acts on
the undamaged area Ã = A − Ad. The equivalence condition on the bar element can be written
in the form

σA = σ̃Ã (3.52)

and dimensionless damage parameter ω can is defined

ω =
Ad
A
. (3.53)

Using Equations (3.52) and (3.53), the stress-strain relation for the one-dimensional case can be
written

σ = (1− ω)Eεe = E(εe − εd), (3.54)

where

εd = ωε. (3.55)

In the general three-dimensional case, the stress-strain relation is obtained similarly

σ = (1− ω)Deε, (3.56)

where ε represents strain vector without irreversible strains in the form

ε = εtot − εp − εc − εag − εsh − εt. (3.57)

Additionally, the evolution law for damage parameter ω has to be established, and it depends
on the type of the modeled material. The evolution law suitable for concrete was proposed
in [Papa and Taliercio, 1996], and has the form

ω =
a(ε− ε0)b

1 + a(ε− ε0)b
, (3.58)

where ε0 is the strain threshold, a and b are material parameters controlling the peak value and
slope of the softening branch. The damage evolves after the strains exceed the limit value of ε0.

It is well known ([Lemaitre and Chaboche, 1994]), that damage models are mesh-sensitive. It
is connected with the dissipated energy, which depends on the characteristic size of a damaged
element, and it leads to physically unrealistic results. Dissipated energy tends to zero with de-
creasing the characteristic size of the element. The so-called method of the variable softening
modulus was developed to avoid the spurious mesh dependency [Pietruszczak and Mróz, 1981].
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The method consists in involving the characteristic element length into the damage evolution law.
The stress can be expressed for one-dimension in the form

σ = ft exp

(
− wcr
wcr0

)
, (3.59)

where ft is the tensile strength in [Pa], wcr [m] is the crack opening, and wcr0 [m] is the material
parameter controlling the initial slope of the softening branch, see Figure 3.2. The crack opening
can be smeared over the element using the following equation

ε− εe =
wcr
h
, (3.60)

where h is the characteristic element length. When combining Equations (3.54), (3.60), and (3.59),
the resulting nonlinear equation for the damage parameter ω yields

(1− ω)Eε = ft exp

(
−ωhε
wcr0

)
. (3.61)

In the case of two-dimensional and three-dimensional models, strain ε has to be substituted by
equivalent strain κ. There are many definitions of the equivalent strain κ, but in the case of con-
crete modeling, the most used definition is the Mazars’ norm ([Mazars and Pijaudier-Cabot, 1989])
which has the form

κ =
√
〈εα〉〈εα〉, (3.62)

where εα denotes the principal values of the strain tensor ε and the symbol 〈〉 denotes the selection
of positive components (Macaulay brackets).

3.2.2 Anisotropic damage model

The main drawback of the scalar isotropic damage model is that it uses only one damage parameter
for all principle directions regardless of tension or compression. Once the damage parameter caused
by exceeding limit strain in one principle direction evolves, it reduces stiffness in all remaining
principal directions even though they should not be influenced. This drawback is not significant
in the case of one-dimensional stress state such as tension/compression, but it becomes more
important, especially for three-dimensional stress state.

That led to the development of the more advanced damage model, which can better describe the
3D problems. In the paper [Papa and Taliercio, 1996], the authors proposed a general anisotropic
model for concrete, which contains nine material parameters. The anisotropic damage model
was implemented similarly to the approach proposed in [Papa and Taliercio, 1996] returning zero
stresses for the full damage evolution. The model is derived from the Helmholtz free energy written
in tensorial notation

ρψel =
1

2

(
K − 2

3
G

)(
ε2
V − dε2

V

)
+Gtr

[(
I − ωt

)1/2
et
(
I − ωt

)1/2
et
]

+

+Gtr
[
(I − ωc)1/2 ec (I − ωc)1/2 ec

]
(3.63)

where ρ is the material density, K is the bulk modulus, G is the shear modulus, εV stands for
the volumetric strain, indices t and c denote tension and compression. I is the second-order
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identity tensor. Additionally, d stands for volumetric damage, ωt represents the damage tensor
for tension, and ωc represents the damage tensor for compression. The strain vector ε is rewritten
to the tensorial form e, and decomposed to the tensile and compressive components

e = et + ec, (3.64)

where et and ec are tensor having the same positive and negative eigenvalues as the tensor e,
respectively, and zero for possible remaining eigenvalues.

Damage driving forces conjugated to volumetric damage d, damage tensor for tension ωt and
damage tensor for compression ωc can be derived from the relation (3.63) by its derivatives with
respect to damage parameters

Y t = −∂(ρψel)

∂ωt
= Get · et, (3.65)

Y c = −∂(ρψel)

∂ωc
= Gec · ec, (3.66)

y = −∂(ρψel)

∂d
=

1

2

(
K − 2

3
G

)
(εV )2 (3.67)

The tensors Y c and Y t have the same principal directions as ec or et, respectively. Both ωc

and ωt also have the same directions. Principal stresses can be derived from Equation (3.63) by
derivatives with respect to strains, and the following relation can be obtained

σα =

(
K − 2

3
G

)
[1− dH(εV )] εV + 2G

[
1−H(εα)ωtα −H(−εα)ωcα

]
εα, (3.68)

where α represents the index of principal direction, and H stands for the Heaviside function.
The model has three sets of material parameters controlling damage evolution for volumetric

and deviatoric damage. The authors of the model proposed the following damage evolution laws

ωβα =
Aβ

(
Ȳ β
α − Ȳ

β
0

)Bβ
1 + Aβ

(
Ȳ β
α − Ȳ β

0

)Bβ , (3.69)

and

d =
a (ȳ − ȳ0)b

1 + a(ȳ − ȳ0)b
, (3.70)

where β represents indices t and c, which are used for tension and compression, respectively. The
parameters Ȳ β

0 and ȳ0 stand for initial damage threshold, and parameters A, B, a and b controls
the stress peak and slope of the softening branch. The dimensionless conjugated driving forces
Ȳ β and ȳ are defined as Ȳ β

α = Y β
α /E and ȳ = y/E.

3.2.3 Orthotropic damage model

In the case of the anisotropic damage model, laboratory measurements of required material pa-
rameters have to be performed, but they cause difficulties in some cases. Additionally, the model
requires a significant number of internal variables that have to be stored. These difficulties led to



48 Thermo-mechanical analysis of nuclear reactor containment

the development of a simplified version of the model, which is based on six material parameters -
three for tension and another three parameters for compression.

The model is based on the following stress-strain relation

σα =
(
1−H(εα)ωtα −H(−εα)ωcα

) [(
K − 2

3
G

)
εV + 2Gεα

]
, (3.71)

where the index α stands for the index of principal components of the given quantity. The model
defines two sets of damage parameters ωtα and ωcα for tension and compression.

Many evolution laws can be used for ωtα and ωcα description. The two evolution laws for the
damage parameters are used similar to the laws used in the scalar isotropic damage model. The
first law gives better results for compression, but the material parameters’ determination is more
complicated. It can be written in the form

ωβα =
Aβ

(
|εβα| − ε

β
0

)Bβ
1 + Aβ

(
|εβα| − εβ0

)Bβ , (3.72)

where |εβα| is the maximum principal strain in the loading history, equivalent to in Equations (3.61)
and (3.62). Aβ, Bβ, εβ0 are material parameters with the same meaning as in the similar law defined
by Equation (3.58). The second law involves the correction of the dissipated energy concerning
the size of elements, and it describes tension better. It is defined by the nonlinear Equation (3.73)
which can be solved using the Newton method

(
1− ωβα

)
E|εβα| = fβ exp

(
−ω

β
αh|εβα|
wβcr0

)
. (3.73)

In the above equation, fβ represents the tensile or compressive strength, and wβcr0 controls the
initial slope of the softening branches. More details about the implemented models can be found
in [Koudelka and Krejč́ı, 2008], [Krejč́ı et al., 2009] and [Koudelka et al., 2009].

t
f

cr0 crw w

σ

Figure 3.2: One-dimensional traction separation law.
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3.3 Computer simulation of reactor containment

The reliability and durability of reactor containments depend directly on the prestressing system.
General results from in-situ measurements during the operation show the increase of deformations
and the increase of prestress losses since the onset of service. Many measurements explain these
phenomena, e.g., at Swedish nuclear reactor containments with non-injected (non-bounded) pre-
stress tendons [Anderson, 2005]. An example of such time evolution of the tendon force in 5 years
is plotted in the logarithmic scale in Figure 3.3. Most of the measurements also indicate that the
temperature significantly influences prestress losses. This fact is also supported by two gradients
of the tendon force losses observed in the nuclear power plant in Temelın in the Czech Republic.
It is documented by 6.5 years of measurements of the tendon force depicted in Figure 3.4. This
section presents a computer simulation of the nuclear power plant containment in Temelın (Fig-
ure 3.5) under cyclic temperature loading during service when stages of service and planned stops
are changed. For this study, the well-known fact that the increase in temperature influences the
rate of concrete creep is accepted. It is also responsible for the prestress losses of the structure.
Simultaneously, increasing deformations can be observed, and additional cracks could occur.

The presented computer simulation as a local model is a part of a complex two-level, global
and local, model predicting the prestress losses and the structure response. The global model
aims the evolution of prestress forces changed by temperature and climatic loading while the local
model is loaded by the mechanical and thermal loading determined from the global model to
explain several peculiarities in the containment behavior, mainly the increase of radial strains,
which began to show after the service onset. It was verified that the global model results agree
very well with the measurement by a magneto-elastic method (MEM). This is mainly the cap-
turing of the prestress force fluctuation caused by temperature decrease and increase during the
cyclic reactor shutdown and restart [Bittnar et al., 2008]. The central part of the local model is
a staggered coupled thermo-mechanical analysis, where the heat transfer analysis runs in parallel
with the mechanical analysis. The fundamental models in the mechanical part are Bažant’s B3
model defined in material point with microprestress-solidification theory describing the temper-
ature effect on concrete creep and the orthotropic damage model. The presented computation
attempts to model and explain the increase of radial deformation and decreasing of tendon forces
since the onset of power plant service. Regarding [Anderson, 2005] and discussions in theoretical
studies [Bažant et al., 2004] and [Hellmich, 1999], it can be concluded that the increase of temper-
ature influences creep acceleration. Every change of temperature, moisture content, and loading
causes changes in creep rate [Bažant et al., 2004]. There is no doubt that the temperature is one
of the sources of prestress losses increase.

3.3.1 Geometry of the local model and basic data

The containment of the nuclear power plant in Temeĺın in the Czech Republic is a monolithic
post-tensioned structure made from reinforced concrete (Figure 3.5). It consists of two parts - the
lower cylindrical part and the upper dome. The cylinder has an internal diameter of 45.00 m, and
the wall is 1.20 m thick. The dome is fixed into a massive girder. The scheme of the structure is in
Figure 3.6. The leak-proofness of the containment is secured by the 8 mm thick steel lining placed
inside the structure. Unbounded tendons are placed in three parallel layers in the containment
wall.

The local model, one cylindrical segment, represents a periodic unit cell (PUC) from the
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Figure 3.3: Change of tendon force gradient since service time for Swedish nuclear reactor con-
tainment [Anderson, 2005].

Figure 3.4: Change of tendon force gradient since the service time of reactor containment in
Temeĺın [Štěpán, 2005], measurements by a magneto-elastic method (MEM) and by Hottinger
sensors.

cylindrical part of the containment with channels for prestressing tendons and vertical, radial and
horizontal reinforcement. It is captured in Figures 3.7 and 3.8. The height of PUC is 2.12 m, and
it covers the section of the angle of 7.5◦. The prestressing tendons are not modeled. Their effect
is introduced as mechanical loading applied through the anchorage system on the top surface of
the cylindrical segment, and on the surface of the tendon channels.

The finite element mesh was generated by the mesh generator T3D [Rypl, 2021]. It contains
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Figure 3.5: Containments in Temeĺın (source virtualniprohlidky.cez.cz)[CEZ, 2021].

Figure 3.6: Geometry - section view of the containment.

1064171 nodes, 334078 tetrahedral elements with linear approximation functions for concrete and
1685 linear bar elements for steel reinforcement. The model was computed in SIFEL computer
code as a thermo-mechanical coupled analysis using a staggered algorithm. The partially coupled
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Figure 3.7: Scheme of PUC.

Figure 3.8: Tendon channels and reinforcement.
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Figure 3.9: Temperatures of inner and outer surface considered in the computer simulation since
the end of construction.

concept solves the system of Equations (2.55) for heat transfer in the transport part

KTdT +CT ḋT = fT

and the system of Equations (2.30) in the incremental form in the mechanical part

Ku∆du = ∆f ext + ∆f 0.

3.3.2 Temperature loading

The Dirichlet boundary conditions represent the impact of temperature, and temperatures from in-
situ measurements (inner and outer surface) are applied. The temperature cycle loading depicted
in Figure 3.9 was considered in one-year intervals. Applied Dirichlet conditions have been obtained
from the idealized course of measured temperatures [Štěpán, 2005], where one cycle operation-stop
per year was assumed. The maximal temperature difference about 11◦C is applied at the inner
surface and about 5◦C at the outer surface, see. Figure 3.10.

3.3.3 Mechanical loading

Mechanical loading of the cylindrical segment is considered as a combination of four types of
loading:

� Self-weight of the segment.

� Self-weight of the containment over the segment is considered as loading on the top surface.

� Vertical loading of the prestress forces is also considered as loading on the top surface. It
is computed from the reactions of the anchorage system decreased by prestressing losses
caused by friction in tendon channels.
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Figure 3.10: Temperatures of inner and outer surface considered in one year cycle.

� Loading prescribed directly in tendon channels consists of radial and tangential components
(Figure 3.11).

The first two loadings are instantaneous. The latter two loadings are calculated as a multiple
of prestressing forces in tendons in place of the anchorage system. The prestress forces’ values
are obtained from in-situ measurements by a magneto-elastic method (MEM) [Štěpán, 2005], and
they are displayed in Fig. 3.12. The data were approximated by a logarithmic regression method.
In the graph, jumps in the prestress force, which simulate the cycle service time - the planned
stop (Fig. 3.13), are obtained from the global model [Bittnar et al., 2008].

Figure 3.11: Radial and tangential components of loading in tendon channels.
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Figure 3.12: Change of the prestress force in the anchorage system since the end of construction.

Figure 3.13: Change of the prestress force in the anchorage system in one year cycle.

3.3.4 Material properties and models

In the transport part of the problem, the linear and non-stationary heat transport was solved,
assuming constant material parameters. The mechanical part of the computation considered four
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types of constitutive material models: creep, damage, plasticity, and the thermal dilatation. The
concrete behavior is described by the combination of the B3 creep model influenced by temperature
changes and by a suitable damage model. Moisture effects were not taken into account due to the
concrete’s maturity and due to inner and outer surface structure isolation. Several damage models
were used in the computer simulation. The local and non-local versions of the scalar isotropic
damage model were tested first. Then the model was extended by anisotropic and orthotropic
damage models.

The scalar isotropic damage model showed that tensile strength plays a key role. Several an-
alyzes with different values of the tensile concrete strength were performed. The results obtained
for the tensile strength lower than 3.7 MPa give unrealistic behavior due to the extensive damage
evolution. In contrast, no damage was observed on the containment structure in situ. It should be
noted, the value of the tensile strength was not measured experimentally. Only the compressive
strength was determined to value 60 MPa from laboratory tests [Štěpán, 2005]. For this com-
pressive strength, the approximate value of the tensile strength 3.5 MPa can be set according to
Czech Technical Standards. It can be recommended for such an important structure the necessity
of experiments with concrete specimens created during containment construction to obtain other
reliable material parameters for advanced modeling, e.g., the tensile strength and fracture energy
in case of damage models.

The scalar isotropic damage model provides the highest limit of structure damage estimation
due to the global stiffness reduction. Then the anisotropic and orthotropic damage models appear
to be preferable for 3D problems loaded by temperature changes. Calculations using these models
give a similar response for the lower level of tensile strength - in the range 2.0-2.8 MPa. The setup
of the anisotropic damage model’s material parameters was more difficult and time-consuming.
Therefore, the orthotropic model, combined with the B3 concrete creep model, was finally used.
The basic material parameters setup is summarized in Tables 3.2 and 3.3.

The model of the containment should exhibit good agreement with measured strains in the
radial reinforcement. From this point of view, the most important outputs for comparison are
damage distribution and the time evolution of the strains in radial steel reinforcement. The
steel reinforcement was modeled by the finite bar elements with the plasticity model using the
Huber-Misses-Hencky yield criterion, where the yield stress 490 MPa was assumed. The thermal
dilatation coefficient was supposed to be 12× 10−6K−1 in both materials (concrete and reinforce-
ment). Material parameters of steel reinforcement are listed in Table 3.4.

The sequential computation of the containment segment was very time and memory consuming.
It should be noted that many calculations had to be performed due to the setup of material
parameters. Although the small segment was modeled instead of the complete containment, the
single processor computation was suffered by large memory requirements and the computational
time was unacceptably long. Therefore, the parallelization of the problem based on the domain
decomposition method was adopted.

Volume weight ρ = 2600 kg.m−3

Thermal conductivity coefficient λ = 2.0 W.(m.K)−1

Specific heat capacity C = 800 J.(kg.K)−1

Table 3.2: Thermal material parameters for concrete.



Thermo-mechanical analysis of nuclear reactor containment 57

Young’s modulus in 28 days Eb = 30500 MPa
Poisson’s ratio ν = 0.2

Cement PC 475 499 kg/m3

aggregate size 0-4 mm 710 kg/m3

aggregate size 8-16 mm 460 kg/m3

aggregate size 16-22 mm 530 kg/m3

Ligoplast SF 4.9 kg/m3

Water content 215 kg/m3

Cubic compressive stregth in 28 days Rb = 44.0 MPa
Beginning of prestressing t0 = 1260 days

Table 3.3: Parameters for B3 concrete creep model.

Young’s modulus Eo = 210000 MPa
Poisson’s ratio ν = 0.3
Yield stress fy = 490 MPa

Table 3.4: Parameters of steel reinforcement.

3.3.5 Parallelization of the problem

The number of unknowns in the mechanical analysis was 190000 and 63000 unknowns in the heat
transport analysis. The analysis was performed on a single processor computer with the processor
AMD Athlon 64 X2 6400+ equipped with 8 GB of memory. Concerning extremely high memory
requirements, the matrix of the system of equations was stored in the compressed storage scheme,
and 2.5 GB of memory was consumed. Because of the storage scheme, the conjugate gradient
method was used. The system of algebraic equations was solved in each increment and each inner
iteration loop of the Newton-Raphson method. The solution of one system of equations took
about two minutes.

The problem was decomposed into eight subdomains to speed up the computation (Fig. 3.14).
The average number of unknowns on one subdomain in the mechanical analysis was about 25000,
and about 8300 unknowns in the transport analysis, respectively. The parallel computation was
performed on a heterogeneous PC cluster where five computers were based on the Intel E6850
processors with the frequency 3 GHz, and 3.3 GB of memory and three computers were based
on the Intel E6600 processors with the frequency 2.4 GHz and 3 GB of memory. The Schur
complement method was used with the factorization of the subdomain matrices, and the reduced
problem was solved using the LDLT factorization. The factorization of the subdomain matrices
took about 17 minutes, and the reduced problem’s factorization took 5.5 minutes. The modified
Newton-Raphson method was used, then the factorizations were performed only once. The solution
of new systems with different right-hand side vectors took about 5 seconds only. The analysis
exploited 1.5 GB of memory on slave processors and 2.1 GB on the master processor.

In comparison, both single processor and parallel computations were executed within 93 hours.
The parallel algorithm performed 39000-time steps; on the other hand, the single processor algo-
rithm did only 3590-time steps. From this point of view, the parallel code was more than ten times
faster than the single processor one. The results of both computations were thoroughly compared
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Figure 3.14: Decomposition into subdomains, deformed shape of the mesh (blue).

because they used different methods of the solution of the equation system.

3.3.6 Results of computation. Validation and verification of the model

The relation between the local model response and the tensile strength of concrete in damage
models was observed during the computer simulation. Hence, several calculations were performed
with different tensile strengths to verify the damage evolution. As expected, the scalar isotropic
damage model gives the higher estimate than the orthotropic damage model because the damage
parameter in the scalar one influences all principal directions.

Fig. 3.15 - left captures the damage parameter distribution for the scalar isotropic damage
model. The concrete tensile strength was assumed 3.75 MPa, and the results were obtained after
applying 100% of prestressing. The damage parameter ω attained the maximum value of 0.97.
In comparison, the state at the beginning of operation can be seen in the same figure Fig. 3.15 -
right. In this case, the maximum attained value of the damage parameter ω was 0.98. For both
states, the maximum values of the damage parameter are represented by the dark red color, while
the blue areas are undamaged. The distribution of the corresponding crack opening, w, is shown
in Fig. 3.16. The damage evolution can be observed during the prestressing phase, especially.
The increase of damage parameter can also be observed at the beginning of the operation, but
during particular cycles of shutdowns and operations, the damage remains almost unchanged. The
maximum value of the crack opening width, w, is 0.088 mm at the end of the prestressing phase
and 0.113 mm at the beginning of the operation. Note that in these figures, the same color scheme
is used for the damage parameter, ω.
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Figure 3.15: Distribution of the damage parameter ω for 100% of prestressing (left) and at the
beginning of operation (right) - scalar isotropic damage model.

Figure 3.16: Distribution of the crack opening width w [m] for 100% of prestressing (left) and at
the beginning of operation (right) - scalar isotropic damage model.

The following results were obtained using the orthotropic damage model for the lower tensile
strength ft = 2.0 MPa. Fig. 3.17 (left) illustrates the distribution of the tensile damage parameter
in the first principal direction, which corresponds to the radial direction and Fig. 3.18 shows the
distribution of the tensile damage parameter in the second principal direction, which corresponds
to the tangential direction, for the level of 100% of prestressing. The maximum value of the
damage parameter in the radial direction ωt is 0.93 and 0.93 in the tangential direction. The same
color scheme is used as previous for the scalar isotropic damage model. The damage parameters
in the third principal direction have zero or negligible values.
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Figure 3.17: Distribution of the damage parameter ωt in the radial direction for 100% of prestress-
ing (left) and the corresponding crack opening width wt [m] in the radial direction - orthotropic
damage model.

Figure 3.18: Distribution of the damage parameter ωt in the tangential direction for 100% of
prestressing (left) and the corresponding crack opening width wt [m] in the radial direction -
orthotropic damage model.

The validation of the presented numerical model against in situ measurements was carried
out by comparing strains in radial reinforcement in the place of sensors Hottinger. The main
aim was capturing the trend of the strain evolution during the construction and operation time.
The development of the strain in the most loaded bar of radial reinforcement can be seen in
Fig. 3.19 (above). Due to output data reduction, each two operation/shutdown cycles have been
merged and printed. In the diagram, the dashed red line represents measured strain in the radial
reinforcement, and the black line represents the computed results, respectively. The course of
the measured strains was simplified, and this red dashed line connected only peak values. These
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results are not acceptable because they differ from the measurements significantly since the end
of the prestressing phase. Additionally, unrealistic tensile strength 3.75 MPa was used, and the
scalar isotropic damage model seems to be less accurate for this analysis. On the contrary, the
second diagram in Fig. 3.19 (lower), which corresponds to the orthotropic damage model with
the tensile strength 2.0 MPa, exhibits better coincidence with the measured data. However, the
evolution of strains still differs from measurements in later times (from the time 4000 days).

Figure 3.19: Diagram of the strain evolution in the radial reinforcement - isotropic damage model
(above) and orthotropic damage model (lower).

3.3.7 Results of computation and conclusions

It can be concluded from the data of the analysis that the temperature effect, which increases
concrete creep, is vanishing in time. In the case of accompanying effects due to cracking strain
evolution, the increase of radial deformation and decrease of tendon forces during service life can
be observed.

The following conclusions can be made from the obtained results:
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� The explanation of the increase of radial strains and decrease of tendon forces since the
onset of service is based on the theoretical knowledge in concrete creep influenced by the
temperature changes and partly on the prestress losses measurements mainly at Swedish
nuclear reactor containments. The influence of the temperature increase during the service
was proved.

� The results obtained from the combination of the simplified global model and the local model
show relatively good coincidence with in-situ measurements.

� For the best coincidence between the computer simulation and the measurements, calibration
of all appearing material models and their parameters should be performed and compared
with laboratory and in-situ measurements. Especially, the tensile strength, which is the
fundamental property for monitoring the possible damage of the containment, has to be
determined.

From the computational point of view, it can also be concluded that the parallelization of
the problem helped significantly to reduce computational time. Achieved speed up of the parallel
code stems from two facts. First, more processors were used compared to the sequential version.
Second, the sequential code had to use a solution of the system of equations based on the conjugate
gradient method due to huge memory requirements, while the parallel implementation was based
on matrix factorization. Therefore, only the back substitution was performed in each loop of the
Newton method.
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Chapter 4

Thermo-hygro-mechanical analysis of
Charles bridge

The second numerical example is the study of the current stress and damage state of the masonry
Charles bridge influenced by climatic loading. The Charles bridge belongs to the most prominent
European historical structures. It is highly esteemed not only for its historical magnitude but
also for the economic contributions, caused namely by the attention of tourists. In this study, the
thermo-hygro-mechanical analysis follows the staggered coupling algorithm connecting the heat
and moisture transfer model, which was extended by climatic loading and mechanical damage
models.
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4.1 Künzel and Kiessl’s coupled heat and moisture trans-

fer approach

The coupled heat and moisture transfer can in porous materials be easily simulated by a model
proposed by Künzel and Kiessl’s [Künzel and Kiessl, 1997]. It is a phenomenological approach
suitable for concrete and masonry structures under common climatic conditions. Advantage of
this approach is its straightforward application to the analysis of building structures in normal
climatic conditions and easy and quick determination of physical material properties obtained
from laboratory measurements. This popular model is summarized in the following section.

Two unknowns are introduced in the model for each material point, relative humidity ϕ [-] and
temperature T [K]. The model divides the over-hygroscopic region into two subranges - capillary
water region and supersaturated region, where different conditions for water and water vapor
transport are considered. For the description of simultaneous water and water vapor transport,
the relative humidity ϕ is chosen as the only moisture potential for both hygroscopic and over-
hygroscopic ranges. Although the model uses certain simplifications, it describes all substantial
phenomena, and the predicted results comply well with experimentally obtained data, which is the
main advantage of the model together with the effortless and quick determination of the material
properties measured in a laboratory.

4.1.1 Transport equations

Künzel proposed that the moisture transport mechanisms are just water vapor diffusion and liquid
transpor which is relevant to numerical analysis in building physics [Künzel and Kiessl, 1997].
Vapor diffusion is the most important for large pores, whereas fluid transport occurs place on
pore surfaces and in small capillaries.

Vapor diffusion in porous media is described in the model by the Fick’s diffusion and effusion
in the form

Jv = −δp∇p = − δ
µ
∇p, (4.1)

where δp [kg m s−1 Pa−1] is the vapor permeability of the porous material, p denotes vapor pressure
[Pa], the vapor diffusion resistance number, µ [-], is a material property, and δ [kg m s−1 Pa−1] is
the vapor diffusion coefficient in air.

The liquid transport mechanism includes fluid flow in the layer absorbed (surface diffusion)
and in the water-filled capillaries (capillary transport). The driving potential in both cases is
capillary pressure (suction stress) or relative humidity ϕ. The flux of liquid water is described by

Jw = −Dϕ∇ϕ, (4.2)

where the liquid conductivity, Dϕ [kg m s−1], is the product of the liquid diffusivity, Dw [m2 s−1],
and the derivative of water retention function Dϕ = Dw · dw/dϕ.

The heat flux is proportional to the thermal conductivity of the moist material and the tem-
perature gradient (Fourier’s law)

q = −λ∇T, (4.3)

where λ [W m−1 K−1] is the effective thermal conductivity of the wet material. The enthalpy
flows through moisture movement and phase transition is taken into account in the form of source



Thermo-hygro-mechanical analysis of Charles bridge 65

terms in the heat balance equation. In Equations (4.1) to (4.3), permeability, liquid, and thermal
conductivities are assumed as tensors for general three-dimensional problems.

4.1.2 Balance equations

The heat and moisture balance equations are closely coupled because the moisture content depends
on the total enthalpy and thermal conductivity, while the temperature depends on moisture flow.
The resulting set of differential equations for the description of simultaneous heat and moisture
transfer, expressed in terms of temperature, T , and relative humidity, ϕ, has the form of partial
differential equations defined on a domain Ω

∂w

∂ϕ

∂ϕ

∂t
= ∇T

(
Dϕ∇ϕ+ δp∇(ϕpsat)

)
, x ∈ Ω, (4.4)(

ρC +
∂Hw

∂T

)∂T
∂t

= ∇T
(
λ ∇T

)
+ hv∇T

(
δp∇(ϕpsat)

)
, x ∈ Ω, (4.5)

where Hw [J m−3] is the enthalpy of the material moisture, w [kg m−3] represents the water content
of the material, hv [J kg−1] is the evaporation enthalpy of the water, psat [Pa] denotes the water
vapor saturation pressure, ρ [kg m−3] is the material density, C [J kg−1 K−1] is the specific heat
capacity, and t [s] denotes time. The boundary of the domain Ω is split into several parts ΓT , Γϕ,
ΓqpT , ΓJpϕ, ΓqcT and ΓJcϕ which are disjoint and their union is the whole boundary Γ.

4.1.3 Boundary conditions

Three types of boundary conditions accompany the system of equations (4.4) and (4.5):

� Dirichlet boundary conditions for prescribed temperature and relative humidity

T (x, t) = T (x, t), x ∈ ΓT (4.6)

ϕ(x, t) = ϕ(x, t), x ∈ Γϕ (4.7)

� Neumann boundary conditions for prescribed fluxes

qn(x, t) = q(x, t), x ∈ ΓqpT , (4.8)

Jn(x, t) = J(x, t), x ∈ ΓJpϕ, (4.9)

� Cauchy boundary conditions

qn(x, t) = α(T (x, t)− T∞(x, t)), x ∈ ΓqcT , (4.10)

Jn(x, t) = β(p(x, t)− p∞(x, t)), x ∈ ΓJcϕ, (4.11)

where T (x, t) is the prescribed temperature, ϕ(x, t) is the prescribed relative humidity, q(x, t)
represents the value of heat boundary flux in the direction of normal vector n, J(x, t) is the value
of moisture boundary flux in the direction of normal vector n, α [W m−2 K−1] and β [kg s−1 Pa−1]
are the heat and mass transfer coefficient, T∞ denotes the ambient temperature, and p∞ stands
for the ambient water vapor pressure.
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4.1.4 Discretisation of the differential equations

The finite element method is used for spatial discretisation of the partial differential equations
Eq. (4.4) and (4.5). The weighted residual method is applied to the mass balance equation
assuming δT = 0 on ΓT and δϕ = 0 on Γϕ∫

Ω

δϕ
(∂w
∂ϕ

∂ϕ

∂t
−∇T

(
Dϕ∇ϕ+ δp∇(ϕpsat)

))
dΩ = 0 (4.12)

and also to the energy balance equation∫
Ω

δT

((
ρC +

∂Hw

∂T

)
∂T

∂t
−∇T (λ ∇T )− hv∇T (δp∇(ϕpsat))

)
dΩ = 0. (4.13)

Applying Green’s theorem the weak formulation for mass transfer yields∫
Ω

δϕ
(∂w
∂ϕ

∂ϕ

∂t

)
dΩ +

∫
Ω

∇δϕ ·
(
Dw

dw

dϕ
+ δppsat

)
∇ϕdΩ +

∫
Ω

∇δϕ ·
(
δpϕ

dpsat

dT

)
∇TdΩ

−
∫

ΓJ

δϕ
(
Dw

dw

dϕ
+ δppsat

)∂ϕ
∂~n

dΓ−
∫

Γq

δϕ
(
δpϕ

dpsat

dT

)∂T
∂~n

dΓ = 0

(4.14)

and the weak formulation for heat transfer∫
Ω

δT
(
ρC +

∂Hw

∂T

)∂T
∂t

dΩ +

∫
Ω

∇δT
(
λ+ hvδpϕ

dpsat

dT

)
∇TdΩ+∫

Ω

∇δT
(
hvδppsat

)
∇ϕdΩ−

∫
ΓJpϕ

δT
(
hvδppsat

)∂ϕ
∂~n

dΓ

−
∫

ΓqpT

δT
(
λ+ hvδpϕ

dpsat

dT

)∂T
∂~n

dΓ = 0.

(4.15)

In the finite element method, the temperature T and relative humidity ϕ are approximated in the
form

T ≈NT (x)dT , ϕ ≈Nϕ(x)dϕ, (4.16)

and the gradients of temperature and relative humidity are also needed

∇T ≈ BT (x)dT , ∇ϕ ≈ Bϕ(x)dϕ. (4.17)

In the previous equations, dT denotes the vector of nodal temperatures, and dϕ is the vector
of nodal relative humidities. Matrices of approximation functions for temperature and relative
humidity NT (x), Nϕ(x) are usually identical. Then the identity also follows for their gradients
B = BT (x) = Bϕ(x). The same rule is adopted for the weight functions δT and δϕ.

Approximations (4.16) and (4.17) are introduced in Equations (4.14) and (4.15). It leads to a
set of first-order differential equations written in the matrix form(

Kϕϕ KϕT

KTϕ KTT

)(
dϕ
dT

)
+

(
Cϕϕ CϕT

CTϕ CTT

)(
ḋϕ
ḋT

)
=

(
Jϕ
qT

)
. (4.18)
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The matrices Kϕϕ, KϕT , KTϕ and KTT create the conductivity matrix of the problem, and they
have the form

Kϕϕ =

∫
Ω

BTDϕϕBdΩ, KϕT =

∫
Ω

BTDϕTBdΩ, (4.19)

KTϕ =

∫
Ω

BTDTϕBdΩ, KTT =

∫
Ω

BTDTTBdΩ, (4.20)

where the conductivity matrices of material Dϕϕ, DϕT , DTϕ, and DTT are diagonal matrices.
The diagonal entries are equal to following conductivities

kϕϕ = Dw
dw

dϕ
+ δppsat, kϕT = δpϕ

dpsat

dT
, (4.21)

kTϕ = hvδppsat, kTT = λ+ hvδpϕ
dpsat

dT
. (4.22)

The matrices Cϕϕ, CϕT , CTϕ, and CTT create the capacity matrix of the problem

Cϕϕ =

∫
Ω

NTHϕϕNdΩ, CϕT =

∫
Ω

NTHϕTNdΩ, (4.23)

CTϕ =

∫
Ω

NTHTϕNdΩ, CTT =

∫
Ω

NTHTTNdΩ, (4.24)

where capacity matrices of material Hϕϕ, HϕT , HTϕ and HTT are also diagonal matrices with
the following diagonal entries corresponding to capacities

cϕϕ =
∂w

∂ϕ
, cϕT = 0, (4.25)

cTϕ = 0, cTT = ρC +
∂Hw

∂T
. (4.26)

The vectors Jϕ and qT contain prescribed nodal fluxes

Jϕ =

∫
ΓJpϕ

NTJdΓ, qT =

∫
ΓqpT

NT qdΓ . (4.27)

There are several extensions and modifications of Künzel and Kiessl’s model, improving the
model’s features or the computational stability of numerical solutions. One such extension by
climatic conditions effect is implemented into SIFEL code according to [Grunewald, 2000], and
it is briefly described, e.g., in [Maděra and Černý, 2005]. Another modification of the model is
presented in [Maděra et al., 2017]. The driving equations are changed for two basic unknowns
- partial vapor pressure pv and temperature T to obtain better stability near a fully saturated
state. A general moisture storage function replaces the sorption isotherm, and the derivative ∂w

∂ϕ

in Equation (4.4) reaches the high values out of proportion.
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4.2 Thermo-hygro-mechanical analysis

of Charles bridge

Charles bridge in Prague is one of the most prominent historical structures in the Czech Republic
(Figure 4.1 and 4.2).

Figure 4.1: Charles bridge, St. Vitus cathedral and the Castle on the background.

Figure 4.2: Detail of Charles bridge in Prague.

The foundation stone was laid down on 9th July 1357, and the bridge itself was completed
around 1406. In the past, the bridge has suffered a lot of disastrous states, mostly due to floods
and water erosion. Fortunately, after the last flood in August 2002, the bridge sustained without
notable damage. The bridge also went through a variety of reconstructions. The previous two
strongly influenced the actual structure. In the last century (the 1960s - 1970s), it was grouting,
the introduction of the water-proofing layer, installation of stabilizing reinforced concrete slab,
replacement of facing masonry, and more recent actions. In July 2007 - June 2010, the last
work included the repair of parapets, hydroisolation of the pavement, and the rehabilitation of
the foundations. The reconstruction was based on a series of computational and experimental
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studies described in [Zeman et al., 2008], [Št’astná et al., 2009], [Přikryl and Št’astná, 2010] and
[Přikryl et al., 2011]. The complex underlying model was multi-scale due to the heterogeneity of
the bridge on different levels. It was able to reflect non-linear material properties, multi-physical
and transient phenomena covering climatic effects, and the interaction of the bridge with water
and colliding vessels. The analyses established that climatic loading should be considered most
dangerous for the bridge as it is responsible for the nucleation and further development of cracks
in the bridge.

The thermo-hygro-mechanical analysis performed could be the first thing when contemplating
any actions such as, e.g., designing further stages of the bridge repair. In the case of Charles
bridge, it is the retrofit of the bridge’s sandstone cladding scheduled for the near future.

The numerical model presented was three dimensional, taking into account the voluminous
proportion of the bridge. The most important part was the simulation of coupled heat and
moisture transfer in the stone masonry of Charles Bridge, which represented the first phase of the
thermo-hygro-mechanical analysis with the comparison of computer results with experimentally
obtained data. The second phase of the study - the prediction of damage evolution, was carried out
in a staggered-coupled format to keep the model complexity manageable. It means that transport
phenomena served as inputs for the mechanical part in each time step.

Such simulations of the evolution of temperature and moisture fields and their impact on the
mechanical response are very arduous tasks, especially when sequential computations of coupled
problems are both time and memory consuming. Therefore, the parallelization of the problem
based on the domain decomposition method was adopted. This method speeded up not only the
solution of the system of algebraic equations but also the evaluation of constitutive equations and
assembling the system matrices.

4.2.1 History and current state

Charles bridge links both banks of the Vltava river, connecting the Old Town and the Lesser Town
in Prague. It was the second arch masonry bridge in Prague, built to substitute the collapsed
Judith’s bridge.

The bridge is 516.7 m long and 9.1 - 9.7 m wide, with 16 arches whose span varies from 16.6
to 23.4 m. It stands on 17 piers (each shielded by an ice guard) with a cross-section ranging from
6.3 - 10.8 m by 24 - 25 m. Founded initially on millstones (either supported by oaken grillages
or boxes anchored to the bed of the river), the piers have heads sharpened at an angle of 65◦,
to protect it against water stream and drifting ice. The subsoil is formed by a 5 - 10 m layer of
coarse grained gravel (with the particle size of up to 0.5 m) that lies on a rock massif consisting
of Ordovic shales and quartzite [Toesca, 2014]. The bridge has been a vital trade route for five
centuries, but since 1966 it only serves pedestrians.

The bridge was damaged many times, mainly from floods and water erosion that caused pe-
riodic reconstructions, rehabilitations, or strengthening, giving to the monument a significant
variability of materials and construction technologies in its different parts. The floods happened
several times during the construction, as well as after the completion. The last catastrophic event
was in 1890, which brought to the collapse three bridge spans (5th, 6th, and 7th vault). Due to
the floods, the original foundations (millstones) were gradually replaced, and some foundation of
piers were rebuilt on concrete caissons, see [Zeman et al., 2008].
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4.2.2 Materials and structural elements

The bridge is mainly built up of Bohemian sandstone masonry. There are main three mesoscopic
heterogeneity patterns distinguished in the body [Zeman et al., 2008]:

� Regular periodic sandstone (upper Cretaceous quartz sandstone and carboniferous arkoses)
ashlars (opus quadratum) facing of vaults (Figure 4.3 left), bound on lime mortar from
sandstone stucco and hydraulic lime [Witzany et al., 2008].

� Sandstone masonry (opus quadratum) with a non-periodic arrangement of blocks used in
the facing of breast walls (Figure 4.3 in the middle).

� Filling irregular quarry masonry (opus caementicium) consisting of arenaceous marl blocks
and mortar made of sand and black hydraulic lime (Figure 4.3 right). Classified as structural
mortared rubble masonry [Přikryl and Št’astná, 2010] according to the different granulome-
try (from 5 to 50 cm) and the coarse particles. The aggregates are macroscopically very fine
grained (aleuropelitic) sedimentary rock of light beige to ochre color. Despite the numerous
interventions, the fill masonry is considered as gothic original, since it is preserved in 13 out
of 15 pillars and in 13 arches out of 16 [Přikryl and Št’astná, 2010].

Figure 4.3: Periodic sandstone, non-periodic sandstone and filling masonry in the Charles
bridge [Toesca, 2014].

Charles bridge is constructed as a traditional masonry arch bridge, where massive piers support
arches - vaults. An internal infill (Figure 4.5 part C), laterally covered by breast walls, makes
the proper level for the flooring, which includes concrete slab, gravity concrete layers, today
hydroisolation, and granite paving. The breast walls (Figure 4.5 part B) stand on the bridge arches
(Figure 4.5 part A); in the lower part, they are 0.9 m thick, while in the upper one, the thickness
is 0.4 m. They were built without expansion joints and are reinforced at the connection with piers
by masonry pillars that are also pedestals for statues (Figure 4.6). As the breast walls, even piers
and vault arches, are built using bush-hammered blocks. The pier masonry is made up of granite
blocks up to the level of the Vltava river, above it, the sandstone is used [Witzany et al., 2008].

4.2.3 Last interventions

The last two reconstructions mainly influence the present state of the bridge. In 1966 - 1975,
the bridge was strengthened by high-pressure grouting and by a reinforced concrete slab (without
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Figure 4.4: Cross-section through the fill masonry of arch XIV [Přikryl and Št’astná, 2010].

Figure 4.5: Schematic 3D view of Charles bridge with A-A section.

expansion joints), covered by a bituminous waterproofing layer. The most degraded stone blocks
were replaced. The passage to vehicles was excluded. It was later shown that some interventions
during the reconstruction were made very callous. This erroneous interventions of the 1960s-1970s
brought problems with chemical, biochemical, and physical degradation of the bridge. They also
strongly influenced the interaction of bridge structural elements (e.g., body filler with the stone
structure) and harmed the overall behavior, contributing to the gradual mechanical disintegration
of the structure. Most of the mentioned problems are described in references [Přikryl et al., 2011],
[Witzany and Zigler, 2007] and [Witzany et al., 2008].

A new intervention was performed in 2007 - 2010 to solve problems in a compatible way, not
only created by the 1960’s - 1970’s repair. It consisted of the rehabilitation of foundations as
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Figure 4.6: Schematization of the bridge elements [Zeman et al., 2008].

the first step, followed by the pavement’s hydroisolation. Then the replacement of parapets, new
navigation signs, and gaslighting followed to end of the work. The existing concrete slab was cut
and dilated in the middle and in the borders to create expansion joints to reduce the stresses
related to its dilatation. Now, the expansion joint in contact with the breast wall is 150 mm thick,
and it is filled with gravel, while the one in the middle of the slab has thickness 20 cm, and it is
formed by extruded polystyrene [MottMacDonald, 2011].

Dilatation joints have been made in the stone railing masonry in correspondence with vault/pier
intersection to prevent cracks evolution in the parapets and breast walls caused by temperature
changes. They are filled with a plastic mortar mixed with stone fragments (Figure 4.7). It was
proven the parapets are the most affected by the up/down movements of the vault related to
summer/winter changes and by the non-uniform temperature profile of the bridge body.

And finally, the most degraded stone blocks were replaced in parapets and breast walls. Despite
all the efforts, the replacement was sharply criticized because the new stones do not match the old
ones aesthetically in their vicinity. All mentioned interventions are summarized in [Toesca, 2014].

4.2.4 Current damage state and possible causes

As for mechanical degradation, there are visible cracks (thickness of millimeters) in vaults, breast
walls, and parapets. In the vaults, the cracks are aligned and located approximately 1 m from the
breast wall (Figure 4.8). They are also present in buttresses, near the pedestals for statues, and
in the corners between buttress and breast wall. Even in the monument, many minor cracks are
present, but they do not represent a menace for structural stability.

Recent studies explained the leading causes of crack development. It is assumed, thanks to the
previous repair, the damage is not related to the movements of the foundation [Zeman et al., 2008].
The non-stress effects are considered causing the interaction of stone bridge structure, bridge body
filler, and breast walls prominently affecting the vertical deformations of the bridge vaults. The
gradient of the non-uniform temperature changes of individual bridge parts (spatial distribution
of temperature field) causes deformation and permanent strain. It leads to a gradual disintegra-
tion of the stone masonry, e.g., growing tilt of the breast walls [Witzany and Zigler, 2007], shear
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Figure 4.7: Dilatation joint and contrast between old and new blocks [Toesca, 2014].

stresses development close to the external surfaces and in layers along with the interface between
sandstone masonry and irregular quarry masonry [Zeman et al., 2008]. The shear stresses caused
by differences in temperature are balanced by tensile stresses which cause the crack nucleation
and development in the breast wall faces and vaults [Krejč́ı and Šejnoha, 2015]. In the parapets,
which have been recently repaired (2007 - 2010), cracks are expected to show again due to the
periodic shear stresses action related to the temperature gradient between the upper and lower
parts and due to the vertical movements of the vaults (upwards in summer and downwards in
winter). It is considered that, in the long period, the mechanism will bring to the ultimate dam-
age the horizontal joints, and consequently, the repair of the parapet will be needed again. The
above mentioned vertical joints have been filled with deformable plastic mortar during the last
reconstruction to reduce this effect (Figure 4.7).

4.2.5 Installation of measuring system and monitoring of temperature
and moisture fields

During the last intervention, a measuring system was installed to monitor the temperature and
moisture content. The continuous monitoring of temperature and moisture fields required a suf-
ficiently dense network of reliable sensors. To this end, four bridge cross-sections were selected,
and they are plotted together with the logger’s position for illustration in Figure 4.9.

The control system has been allocated under the twelfth vault on the Lesser Town’s side of the
bridge. Cross-sections 1 and 2 situated in arch No. XI are 36 m and 34 m away from the logger’s
position, respectively. The distance of cross-sections 3 and 4 (arch VIII) from the logger is 128 m
and 137 m, respectively. Several gauge points are located in the selected cross-sections 1 through 4
(C.S. 1 - 11pts., C.S. 2 - 13 pts., C.S. 3 - 11 pts., C.S. 4 - 15 pts.). Each measuring point has been
fitted with three temperature sensors and with one moisture sensor. To cope with demanding
simulations, just one segment of the bridge, one half of arch VIII, was examined in computer
experiments. The corresponding set-up in cross-sections 3 and 4 is displayed in Figures 4.11 and
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Figure 4.8: Visible vertical cracks in the southern breast wall of arch No. XI near pillar No. 10.

4.10.

Each measuring point has been fitted with three temperature sensors and with one moisture
sensor. To cope with demanding simulations, just one segment of the bridge, one half of arch
VIII, was examined in computer experiments. The corresponding set-up in cross-sections 3 and 4
is displayed in BT 3D1:1, BT 3D1:2, and BT 3D1:3 sstand subsequently for temperature sensors
1, 2, and 3, respectively, while the moisture sensor situated at the same point is denoted as BH
3D1:4. Selected data are stored under this notation in the Information System [CTU, 2010].

The Pt1000 thermometers performed temperature measuring, imbedded in a special resin in
a stainless casing, 6 mm in diameter. Four strands of shielded conductors were delivered with
no interconnections because of the system’s reliability. The sensors were subjected to accelerated
aging in a climatic chamber (cycling between 30 - 100◦C and with samples submerged in warm
acid, alkali, and water). Moisture sensors were also imbedded in unique porous ceramics and
connected with an electric resistivity-voltage transducer made to order. Calibrating was provided
using the gravimetric method exploiting samples extracted from the test pit.
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Figure 4.9: Layout of cross-sections selected for sensors instalment.

Figure 4.10: Cross-section 3 - gauge points (11 points, i.e. 33 temperature sensors and 11 moisture
sensors).

4.2.6 Computational model

The numerical model of Charles bridge simulated the coupled heat and moisture transfer and me-
chanical response of one half of arch III in the course of two years, 2011 - 2012. The finite element
mesh was created using tetrahedron elements with linear approximation functions in an academic
version of GiD modeler [GiD, 2021]. It had 73749 nodes and 387773 elements (Figure 4.12).

The numerical model was based on two theoretical approaches and material models. The
first approach was the heat and moisture transport model, according to Künzel and Kiessl’s
theory described in section 4.1. And the second one, describing the mechanical response, was the
orthotropic damage model (Sec. 3.2.3) which is suitable for three dimensional analyses of quasi-



76 Thermo-hygro-mechanical analysis of Charles bridge

Figure 4.11: Cross-section 4 - gauge points (15 points, i.e. 45 temperature sensors and 15 moisture
sensors).

brittle materials like concrete and masonry influenced by temperature and moisture changes. The
partially coupled thermo-hygro-mechanical leads to the system of Equations (4.18) for heat and
moisture transfer in the transport part(

Kϕϕ KϕT

KTϕ KTT

)(
dϕ
dT

)
+

(
Cϕϕ CϕT

CTϕ CTT

)(
ḋϕ
ḋT

)
=

(
Jϕ
qT

)
and the system of Equations (2.30) in the incremental form in the mechanical part:

Ku∆du = ∆f ext + ∆f 0.

The parallelization of the problem based on the domain decomposition method was inevitable
concerning computer memory requirements. A parallel version of the SIFEL computer code was
used with the distributed memory scheme and the MPI communication library. The Schur comple-
ment method was applied due to a non-linear and non-symmetric final system of Equations (2.94).
The technique was built on the factorization, and the non-linear system was solved using the mod-
ified Newton-Raphson method, which used the initial Jacobi matrix, and the factorization of the
matrix was performed only once in each step. The segment analyzed was split into 12 sub-domains
(Figure 4.13). The average number of nodes and elements on one sub-domain was 7000 and 32000,
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Figure 4.12: 3D finite element mesh model of one half of the arch III.

respectively. The parallel computation was performed on a heterogeneous PC cluster equipped by
32 bit Intel E6850 processors with different frequencies (2.4 to 3 GHz) and the memory from 3GB
to 3.3 GB. The parallel algorithm performed 7596 time steps. A time step was set to cover two
hours (7200 seconds). The overall consumption of the computation (CPU) time was one month.

The staggered algorithm was chosen for the thermo-hygro-mechanical analysis, where data
(temperature and moisture fields) are transferred from the transport part to the mechanical one.
The finite element model for the mechanical analysis corresponds to the current state after the last
reconstruction in 2007 - 2010. The mesh was divided in several different elements and material
groups - the pier masonry, the infill of the pier, vault, the infill of the vault, the northern breast
walls and the southern breast walls, the concrete slab, the first layer upon the concrete slab, the
second layer upon the concrete slab, the pavement with dilatation, and expansion joints (plastic
mortar and extruded polystyrene), see Fig. 4.14.

4.2.7 Validation of simulations against monitoring

The first step of the thermo-hygro-mechanical analysis was the verification and validation of the
heat and moisture transfer model and its material parameters. The boundary conditions for this
part of the study were specified concerning representative climatic data, including the effect of
solar radiation, wind, rain, heat conditions, and the structure’s orientation [Ďurana et al., 2013].
Subsequently, after estimating the extreme surface temperatures of the annual cycle at -15 0C and
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Figure 4.13: Domain decomposition of 3D finite element model of one half of the arch III.

52 0C for the winter and summer season, respectively, a three dimensional temperature field was
analyzed solving linear steady-state heat transfer problems implementing homogenized material
parameters and the surface and interior temperatures obtained from two-dimensional data. The
3D non-stationary evolution of temperature and moisture fields in Charles Bridge was analyzed in
conjunction with its last repair ([Krejč́ı and Šejnoha, 2015] and [Toesca, 2014]), when a measuring
system was installed in the bridge, and the temperature and moisture content at selected gauge
points have been continuously monitored for two years. The only simplification was applied to
the moisture field. As evident from the monitoring, see Figure 4.15, the moisture content evolves
insignificantly within the scrutinized period.

The additional fully coupled heat and moisture transfer approach was carried out in a shorter
period to assess a three dimensional distribution of the moisture field which was then considered
to remain stationary, as the difference between the evolution of the moisture content predicted
on the one hand by simulation and on the other by monitoring seems to be inessential. It was
experimentally ascertained that the percentage increase of the moisture content varies from 5 to
12%, see selected curves in Figure 4.15. These curves confirm the assumption of nearly stationary
moisture content at individual material points (it varies in space, but hardly in time). Some of
the sensors are adversely affected by disturbances coming from the environment (e.g., induced
voltage), which is evident in the end parts of the graphs in Figure 4.15 (lower). In any case, the
reliability of the temperature sensors is much higher in comparison to the sensors monitoring the
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Figure 4.14: 3D finite element mesh - material groups and dilatation joints.

moisture content.

This finding allowed us to account for the dependence of the heat transport parameters on the
moisture content and assume the temperature as the only problem unknown. The boundary and
initial conditions were formulated in the same way as in the above described simplified approach.
Two hours were set for the integration step so that twelve values a day were simulated to cover
local fluctuations. Just one value of a daily set was collected and displayed in graphs to spare
printing time. Moreover, it facilitates discerning the simulated temperature courses from the
monitored data (delivered every ten minutes, i.e., 144 values a day).

The selected comparison of evolutions of the monitored and computed temperatures at indi-
vidual gauge points are shown in Figures 4.16 and 4.17. In the early period of the calculation, a
noticeable disproportion is apparent between the simulated and monitored data. This phenomenon
is due to the incorrectly predicted distribution of the initial temperature field. Fortunately, this
spurious phenomenon vanishes soon afterward, say within three months, and does not devalue the
relevant results.

Two findings draw attention going through these figures in detail. First, the temperature
maxima in summer on the southern surface are higher by roughly 7 - 8◦C Two findings draw
attention going through these figures in detail. First, the temperature maxima in summer on the
southern surface are higher by roughly 4◦C. The second finding shows a specific shift between the
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Figure 4.15: Measurement of the percentage increase of moisture content at gauge points 4D5,
4B2, 4B1 (above) and 4F1, 4D2, 4E1 (lower) [%].

simulated and monitored data in time, which becomes more perceptible at the points approaching
the surface of the vault. As was discovered by direct measurement of surface temperature, such
an undesirable discrepancy was brought about by improperly specified boundary conditions on
the lower surface of arch VIII. The exterior temperature was influenced not only by the shielding
against solar radiation but also by the temperature of the water flowing under the bridge, which
should be accounted for as well. Another reason for the lag between the simulated and moni-
tored data could be attributed to the imperfect homogenized transport parameters of strongly
heterogeneous material.

It is also interesting that the daily fluctuations become higher with a decreasing distance from
the bridge’s surface, whereas they are smoother in the internal regions of the bridge. The temper-
ature of water affects the surface temperature of the bridge foundations. In this case study, the
water table was considered steady and equal to the average year level [Krejč́ı and Šejnoha, 2015].
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Figure 4.16: Distribution of temperature at gauge points 3A1 [◦C].

Figure 4.17: Distribution of temperature at gauge points 3B1 [◦C].

4.2.8 Results of computation and prediction of the bridge behaviour

Because moisture content is not varying significantly during the annual cycle, the thermo-me-
chanical analysis was then performed with the staggered algorithm. The computation covered
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Figure 4.18: Distribution of temperature at gauge points 3D5 [◦C].

Figure 4.19: Distribution of temperature at gauge points 4A1 [◦C].

the period from April 2011 to October 2012. The boundary conditions and the homogenized
material parameters for the heat transport were taken over from the previous coupled heat and
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moisture transfer problem validated against in situ measurements. The initial temperature field
was set just in April 2011 as the average values for the oscillating annual temperatures. Due to
the computational time and memory and CPU requirements, the time step was set to two hours
(7200 seconds) for the heat transport part and to one week (604800 seconds) for the mechanical
analysis.

Two mechanical loadings were added to the FE model apart from the temperature loading
entering the mechanical part of the analysis. The first one was the self weight. The second
one was the pedestrian live load of 5 kN/m2 on the pavement prescribed according to Eu-
rocodes. Material parameters entering the thermo-mechanical computation were chosen from
references [Krejč́ı and Šejnoha, 2015] and [Toesca, 2014], and they are listed in Tables 4.1 - 4.3.

Quantity Sandstone Filling Concrete Granit
masonry masonry pavement

ρ [kg/m3] 1787.89 1841.66 2600.0 2600.0
C [J kg−1 K−1] 696.91 1007.3 800.0 900.0
λdry [W m−1 K−1] 0.449 0.547 1.5 3.5
λsat [W m−1 K−1] 0.802 1.281 1.5 3.5

Table 4.1: Material parameters for the heat transfer model [Krejč́ı and Šejnoha, 2015]. Homoge-
nized (overall) values were estimated using SEPUC [Sýkora et al., 2009].

The deformed shape demonstrates the mechanical response of the structure with the displace-
ments, the stress state, the damage parameters (in three principal directions), and the correspond-
ing crack opening width. The bridge arch moving during a one year cycle, upwards in summer
and downwards in winter, is regarded as a bridge breathing. The maximum vertical displacement
is about +3 mm and -2 mm in summer and winter, respectively. Due to the non-uniform tem-
perature distribution and differences between southern and northern surface temperatures, the
arch also twists and bends in a horizontal direction. The maximum horizontal displacement is
approximately 1.5 mm. Moreover, both parapets, along with the upper parts of breast walls, twist
and deflect from the vertical plane. The displacements of parapets in horizontal direction reach 1
mm.

The maximum values of compression stress remain in the elastic range, while the tensile stress
reaches its limit value in the regions, where damage develops. The damage parameter and mainly
the corresponding crack opening width provide necessary information about possible damage evo-
lution in the bridge. The damage parameters in two principal directions (in tension) are approach-
ing one in the most stressed parts of the bridge. In contrast, in the third principal direction (in
compression), it equals to zero. The first principal direction coincides with the horizontal axis y
of the bridge axis (see Figure 4.13). The second principal direction corresponds to the horizontal
axis x perpendicular to the longitudinal bridge axis.
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Table 4.2: Homogenized mechanical parameters [Toesca, 2014], [Zeman et al., 2008].



Thermo-hygro-mechanical analysis of Charles bridge 85

M
at

er
ia

l
F

ra
ct

u
re

T
en

si
le

L
im

it
d
is

p
la

ce
m

en
t

C
om

p
re

ss
iv

e
L

im
it

d
is

p
la

ce
m

en
t

en
er

gy
st

re
n
gt

h
in

te
n
si

on
st

re
n
gt

h
in

co
m

p
re

ss
io

n
G
f

[N
/m

]
σ
t,

m
a
x

[M
P

a]
u
t,

m
a
x

[m
m

]
σ
c,

m
a
x

[M
P

a]
u
c,

m
a
x

[m
m

]

P
er

io
d
ic

sa
n
d
st

on
e

80
0.

50
0.

16
00

0
-7

.4
0

0.
01

08
1

N
on

-p
er

io
d
ic

sa
n
d
st

on
e

80
0.

50
0.

16
00

0
-7

.4
0

0.
01

08
1

Q
u
ar

ry
m

as
on

ry
40

0.
30

0.
13

33
3

-3
.1

0
0.

01
29

0
G

ra
n
it

e
p
av

.
(l

im
e

m
or

ta
r)

10
0.

75
0.

01
33

3
-4

.0
0

0.
00

25
0

L
ig

h
t

co
n
cr

et
e

+
h
y
d
r.

36
1.

40
0.

02
57

1
-1

2.
75

0.
00

28
2

C
on

cr
et

e
w

it
h

st
ee

l
n
et

36
1.

50
0.

02
40

0
-1

2.
75

0.
00

28
2

E
x
tr

u
d
ed

p
ol

y
st

y
re

n
e

10
1.

00
·1

01
0

1.
00
·1

0−
1
5

-1
.0

0·
10

1
0

1.
00
·1

0−
1
5

C
ru

sh
ed

gr
av

el
10

1.
00
·1

01
0

1.
00
·1

0−
1
5

-1
.0

0·
10

1
0

1.
00
·1

0−
1
5

P
la

st
ic

m
or

ta
r

10
1.

00
·1

01
0

1.
00
·1

0−
1
5

-1
.0

0·
10

1
0

1.
00
·1

0−
1
5

Table 4.3: Material properties for stress-strain relation in orthotropic damage model.

Figure 4.20 illustrates the distribution of damage parameters in the body of arch III. There
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are distinct damage zones in the quarry masonry filling and the transition zone between the filling
and the sandstone masonry of the breast walls. These distributions are underpinned with the
spatial distributions of the temperature field in cross-sections 3 and 4 plotted in 4.21 and 4.22,
respectively. They show the regions where damage might be anticipated. Namely, the strong
temperature gradients, accentuated in these figures with a sudden variation of colors, give rise to
shear stresses in the proximity of the surfaces of the bridge and, consequently, originate massive
damage in the layers localized along with the interface between the quarry and sandstone masonry.
The shear stresses are balanced out by tensile stresses, which then initiate the nucleation and
further development of cracks in the vault and on the breast wall faces.

Figures 4.23 and 4.24 show damage parameters distributions and Figures 4.25 and 4.26 display
the corresponding crack opening width. There are three main distinct zones of possible damage
evolution in parapets and breast walls. The first zone is situated near the connection of the breast
wall and pillar (Figure 4.25). The tensile stress characterizes this zone due to the bridge bending.
The second damage zone (Figure 4.26) is in the middle part of the breast wall under the bed
joints of the parapet. This sort of damage is probably caused by shear stresses arising due to the
differences in the temperature field. The third zone is in the breast wall in the lower part of the
pillar (Figure 4.26), and it is probably brought about by the tensile and shear stresses resulting
from the differences in temperature. Even the variations in temperature in the mere vertical di-
rection and in the cross-section of the bridge arch give rise to the deformation of parapets and
breast walls working against the adjacent bridge body. This effect then provokes the tensile and
shear stresses evolution. The maximum crack opening width in the first principal direction reaches
1.0 · 10−1 mm, and the maximum crack opening width in the second principal direction is about
1.5 · 10−2 mm. There is one other visible damage zone (Figure 4.25) in concrete layers under
the pavement, which is caused mainly by the differences in temperature in conjunction with the
different thermal dilatation coefficient of materials.

The significant finding is that the damage in the vault appears only in perpendicular (hori-
zontal) direction, not in the direction of the bridge and vault axis, and its crack opening width
reaches a maximum value of 1.0 · 10−3 mm, so the vault is almost undamaged.

It should be pointed out that the one year cycle analysis was subsequently extended by further
annual cycles to explore the effect of cyclic temperature loading and to obtain a prediction of
the bridge behavior in the near future. The slight progress of displacements, the evolution of
existing damage zones, and the development of new small damage zones during the second year
of simulation (an increase is about 10%) were discovered when analyzing the results. This state
of the bridge has remained unchanged since.

This analysis underlays the claim that the structure is currently stable and safe and that the
thermal loading has the maximum impact on the bridge’s behavior. Precisely, decreasing temper-
atures toward winter provoke the highest tensile stress state and, therefore, the most significant
damage. As already underlined in [Zeman et al., 2008], considering the temperature cycle, it can
be noticed that this loading is not a threat to the stability of the structure (according to the model
used, the maximum displacement (deflection) is about 3 mm).

The results imply the tendency of the structure to damage in agreement with the real crack
distribution observed on site, mainly on arches 5, 6, 10, 11 and 12 where the damage state is
higher than in arch 3 (the one used in the model because of its known geometry).

The results imply the tendency of the structure to damage in agreement with the real crack
distribution observed on-site, mainly on arches 5, 6, 10, 11 and 12 where the damage state is
higher than in arch 3 (the one used in the model because of its known geometry). The last
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Figure 4.20: Spatial distribution of damage parameter in the bridge structure in summer time after
one year cycle in the first principal direction (left) and corresponding width of cracks openings
(right).

Figure 4.21: Spatial distribution of temperature [Kelvins] in cross-section 3 in summer (left) and
in winter (right).

Figure 4.22: Spatial distribution of temperature [Kelvins] in cross-section 4 in summer (left) and
in winter (right).

rehabilitation deserves to be commented in the light of FE model. The release of the connection
between the breast walls and concrete slab undoubtedly prevents the breasts from damage. The
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Figure 4.23: Deformed shape and damage parameter after two year cycles in the first principal
direction in summer 2011 (left); in winter 2012 (right).

Figure 4.24: Deformed shape and damage parameter after two year cycles in the second principal
direction in summer 2011 (left); in winter 2012 (right).

vertical dilatation joints (filled with plastic mortar) spare the damage on parapets, though they
cannot avoid the propagating cracks into breast walls underneath the joints. The conclusion is
that the damage related to thermal loading in the massive structure cannot be avoided. It is
possible to change its distribution, trying to move it from the weakest structural parts or just
from the eye (as achieved with the last intervention). On the other hand, the low maximum crack
width computed for the actual bridge configuration implies that the problem is mainly aesthetic.
Only the repetition of cycles with exceptional temperatures, combined with the presence of low-
quality blocks or mortar, can subsequently lead to clearly visible damage. The reliability of the
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Figure 4.25: Distribution of the width of crack openings computed from tensile damage tensor
after two year cycles in the first principal direction (left) in winter 2012; red highlighted visible
cracks in breast walls (right) of arch X.

Figure 4.26: Distribution of the width of crack openings computed from tensile damage tensor
after two year cycles in the second principal direction (left) in winter 2012; red highlighted visible
cracks in breast walls (right) of arch X.

model cannot be admitted without reservations, because the initial condition of the FE model
(absence of damage) slightly deviates from reality, where some small cracks were still visible even
after rehabilitation and replacement of blocks.
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4.2.9 Conclusions about Charles bridge thermo-hygro-mechanical
analysis

The presnted is thermo-hygro-mechanical analysis of Charles bridge had two aims. The first
aim was to demonstrate a reliable approach to the description of a coupled heat and moisture
transport in large stone masonry structures, such as Charles bridge in Prague, using computer
simulations. To this end, the well-tried material (constitutive) model by Künzel and Kiessl was
addressed. The study presented the evolution of both temperature and moisture fields obtained by
continuous monitoring of these quantities at selected gauge points in the bridge. Eventually, the
results of computer simulations were validated against those obtained experimentally. A detailed
investigation of computed results manifested a lag of heat transfer at internal points compared to
the ones in the vicinity of the bridge surface. Whereas this phenomenon is thermodynamically
correct, a slight discrepancy between the computational prediction and the measurement was, in
the first place, ascribed to an imperfect prior estimate of transport parameters. It can be deduced
that the thermal conductivities of individual phases (and subsequently of masonry as a whole)
were under-estimated, while the phase heat capacities could likely be over-estimated. Another
phenomenon observed is the decrease in the daily temperature fluctuations passing inside the
bridge. The smoothed out simulated courses correspond to taking only one value a day when
drawing individual courses. As for the moisture content, it is worth noting that this quantity
varies rather slowly over time. This finding was somewhat disappointing after the expensive
hydroisolation of the bridge deck had been implemented. Nevertheless, the moisture content
appeared to be plausible.

The second aim of this analysis was to obtain a notion about the current mechanical state of
Charles bridge. The results presented could serve as a basis for providing a reliable estimate of real
states of stress and damage in Charles bridge. As has already been mentioned, climatic loading is
the most serious for stone bridges as it is responsible for the nucleation and further development
of cracks. The 3D simulations using the SIFEL computer code implicated two causes of periodic
damage in the parapets: shear stresses due to the temperature differences between the upper and
lower parts of the parapets (roughly 2 - 3◦C) and the vertical movements of the vaults (upwards
in summer and downwards in winter) - the breathing of the bridge. There is no doubt that after
a certain period, both reiterating mechanisms will lead to the ultimate damage in the horizontal
joint and the need for maintenance and a complete repair of the parapets. On the other hand,
the damage state and cracks evolution do not influence the stability and bearing capacity of the
bridge distinctly.
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Chapter 5

Thermo-hygro-mechanical analysis of
bentonite in engineered barrier

The third example presented is the numerical simulation of bentonite in an engineered barrier
for the nuclear waste repository. Compacted expansive clays and mainly bentonite are widely
used in sealing geological structures because of their high swelling capacity, low permeability, and
favorable retardation properties. The bentonites are tested as a part of engineered barriers in high-
level radioactive waste storage and disposals in many countries and including the Czech Republic.
Nuclear waste repositories are planned as complex structures with very high demands on safety
and reliability. They will be placed deep in the stable rock host environment with a system of
galleries with chambers created to store radioactive waste surrounded by the engineered barrier.
The barriers will be composed of the special metallic canister enclosing the waste and a bentonite
layer, which should stop the radionuclides migration in the case of container failure. The canisters
will be placed in horizontal drifts or vertical boreholes in a host rock mass [Gens et al., 2009].

The bentonite backfill will be subjected to hydration from the surrounding rock, the nuclear
waste’s heating up, and various mechanical effects that interact in a complex coupled thermo-
hygro-mechanical (THM) phenomena. It is necessary to understand the processes in the near
mass and their time evolution to design a safe and reliable repository. Recent research proved the
need to perform large-scale or medium-scale heating tests simulating repository conditions in un-
derground laboratories. A lot of facilities are being used around the world. Several of them are pre-
sented, e.g., in [Št’́astka et al., 2018], [Gens et al., 2009], [Dixon et al., 2002], [Selvadurai, 1997],
[Alonso et al., 1996], and [Pusch et al., 1985]. Such experiments require long time testing, mea-
sured in years, to obtain relevant results. The understanding of the involved phenomena and their
interaction can be supported by suitable numerical models able to reproduce the main feature of
the tests, where coupled THM formulations are inevitably required.

In-situ tests in underground laboratories are generally intensively instrumented. A large
amount of data obtained are required to define the appropriate parameters of coupled THM
numerical models. From the soil mechanics point of view, in-situ experiments provide the oppor-
tunity to examine the behavior of swelling clays under controlled conditions and validate coupled
THM formulations and associated computer codes.

This chapter presents the numerical analysis of in-situ interaction physical models at the Bukov
Underground Research Facility (URF) in the Czech Republic [SÚRAO, 2021]. The aim of in-situ
interaction physical models at the Bukov URF is to compare several bentonite materials and their
interactions under deep geological repository conditions using several in-situ experiments in a hard
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rock mass. The results of these studies will support the decision of usability of materials and their
combinations in the future deep geological repository [Svoboda et al., 2019a].

The numerical simulation is the auxiliary analysis accompanying the in-situ test. Verification
of the suitable instruments setup, the number of sensors, their type, and the location is essential for
the construction of further tests. Moreover, the simulation helps to predict long-term experiment
behavior for bentonite sampling. The main part of the analysis consists of the coupled thermo-
hygro-mechanical analysis of the bentonite layer, surrounding the metallic canister. This analysis
follows the staggered coupling algorithm combining a hypoplastic mechanical model for expansive
clays with an extended micromechanical based model for heat and moisture transfer in deforming
medium. The numerical results are compared with measured data, and the model is subsequently
validated.
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5.1 Hypoplastic model for expansive clays

Mechanical models for clayed soils can be sorted into two groups. The first group is characterized
by the theory of elastoplasticity described by the stress-strain relation in the form

σ = De : (ε− εp), (5.1)

where σ is the second-order stress tensor, De is the fourth-order elastic stiffness tensor, ε is the
second-order total strain tensor, and εp is the second-order plastic strain tensor. Symbol “:”
denotes the double contraction. The plastic strains εp represents an irreversible part of the total
strains ε, which can be defined by the associated plastic flow rule given by

ε̇p = γ̇
∂f(σ,h)

∂σ
, (5.2)

where f(σ,h) denotes a selected yield function, h is the vector of hardening parameters, and
γ is the consistency parameter. The Cam-clay model is one of the most popular elastoplastic
models [Roscoe et al., 1963]. It involves pressure-dependent modulus for loading and associated
flow rule with isotropic hardening. It was originally developed for fully saturated soils. A model
extension for the partially saturated states was proposed in [Gallipoli et al., 2003]. An additional
hardening parameter depends on the suction pressure, shifting the yield surface along the hy-
drostatic axis. The model’s advantages are the pressure-dependent loading, incorporation of the
state boundary surface (SBS), and the influence of the suction pressure. On the other hand, there
are also significant shortcomings related to the elastic unloading, which does not agree with the
observed soil behavior.

The second group comprises advanced hygro-mechanical and thermo-hygro-mechanical models
based on the hypoplastic approach. Hypoplastic models involve different loading/unloading moduli
directly in the rate form of stress-strain relation

σ̇ =M(σ, ε̇,p) : ε̇. (5.3)

M is the fourth-order generalized stiffness tensor, which depends on the actual stresses σ, strain
rate ∆ε, and other state variables denoted by vector p.

One of the most promising models has been proposed in [Maš́ın, 2013]. The model is com-
posed of a mechanical part based on hypoplasticity coupled with the hydraulic part. It assumes
the double structure of the aggregated soils supported by the experimental evidence of the pore
size distribution (Figure 5.1). The dual structure approach exploits separated formulation of
macro and micro behavior according to well-evaluated models presented in [Alonso et al., 2011],
[Sánchez et al., 2005], and [Romero et al., 2011]. The extension of the model includes the depen-
dence of water retention on volumetric deformation and the influence of temperature changes.
Coupling between macro and microstructure levels depends on the size of macropores (interaggre-
gate pores). It is assumed that the shear strength of the soil is attributed to the macrostructure,
and it is given by effective stress measure independent of microstructural quantities. Hydraulic
equilibrium is assumed between both structure levels, too.

In the model, the deformation of the macroskeleton and the aggregates’ deformation fully
contribute to the overall deformation. The possibility that the aggregates occlude into macropores
are expressed in the following equation describing the additive decomposition of the total strain
rate ε̇

ε̇ = ε̇M + fmε̇
m, 0 ≤ fm ≤ 1, (5.4)
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Figure 5.1: Distribution of pore size density [Maš́ın, 2013].

where fm stands for the factor quantifying macroporosity occlusion by aggregates ranging from
0 to 1, the superscript index M denotes the macro-structural behavior. In contrast, superscript
index m represents quantities related to the microstructural level. The dot (̇) means the time
derivative.

The total void ratio e together with the consistent definition of the double porosity measures
for particular structural levels are defined by

e = eM + em + eMem, (5.5)
ė

1 + e
= εV , (5.6)

ėM

1 + eM
= εMV + (fm − 1)εmV , (5.7)

ėm

1 + em
= εmV . (5.8)

In Equations (5.5)-(5.8), the volumetric strains for macro and micro levels are denoted by εMV and
εmV respectively, while the total volumetric strain is denoted by εV . The total degree of saturation
Sw describing the water volume fractions of the two-pore system can be written in terms degree
of saturation of macro (SMw ) and micro (Smw ) structures by

Sw = SMw +
em

e
(Smw − SMw ). (5.9)

Two different mechanical models for macro and microstructure are defined under the assump-
tion of individual behavior of the two structural levels. Assuming local hydraulic equilibrium
sm = sM and σnet = σnetM = σnetm and the effective stresses concept for unsaturated me-
dia [Bishop, 1959], the following terms for the effective stresses at macro and micro levels are
given

σM = σnet − IsχM , (5.10)

σm = σnet − Isχm, (5.11)
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where I is the second-order identity tensor, χ denotes the effective stress parameter, and the
effective stress vector σeff in unsaturated soils, the net stress vector σnet, and suction s are in the
forms

σeff = σtot + Ipwχ+ Ipg(1− χ), (5.12)

σnet = σtot + Ipg, (5.13)

s = pg − pw, (5.14)

where σtot is the total stress vector, pg and pw stand for the air and water pressures, respectively.
It should be noted that pg and pw are assumed to be positive in compression. The hydraulic (water
retention) model for macro-level reads

χM = SMw = χ =

{
1, s < se(se
s

)γ
, s ≥ se,

(5.15)

where parameter γ represents the macrostructural water retention curve slope, and it is usually
assumed γ = 0.55. se is the suction level at air-entry or air-expulsion defined to be se = sen for
the drying branch of the macrostructural water retention curve and se = ae sen for the wetting
branch. The quantity sen is defined by

sen = se0
eM0
eM

, (5.16)

where model parameter se0 expresses the air entry value of suction for the reference macrostructural
void ratio eM0 , and the parameter ae is the ratio between the air expulsion and entry values of
suction, which controls the difference between the wetting and drying branches of water retention
curves. On the micro-level, the fully saturated state in the micropore system is assumed

χm = Smw = 1, (5.17)

The following equation gives the hysteretic water retention relationship

ṠMw = −γa
SMw
s
ṡ− γS

M
w

eM
ėM , (5.18)

where parameter γa defines the slope of drying/wetting curves. Introducing Equations (5.18)
and (5.17) in Equations (5.10) and (5.11), the following rate forms of the macrostructural and
microstructural effective stresses are obtained

σ̇M = σ̇net + IχM
[
(γa − 1)ṡ+ γ s

ėM

eM

]
, (5.19)

σ̇m = σ̇net − I ṡ. (5.20)

The mechanical behavior of macroskeleton described by the hypoplastic model [Maš́ın, 2013]
can be defined in the rate form of the macrostructure effective stress

σ̇M = fs
(
L : ε̇M + fdN‖ε̇M‖

)
+ fuHs, (5.21)

where ‖ε̇M‖ is the Euclidean norm of strain rate tensor, fs, fd, and fu, are three scalar factors,
and L stands for the hypoelastic fourth-order tensor defined by

L = 3
(
c1I + c2 a

2 σ̂M ⊗ σ̂M
)
. (5.22)
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In previous Equation (5.22), symbol ⊗ denotes the dyadic product of two tensors, σ̂M represents

dimensionless stress tensor given by σ̂M =
σM

tr(σM)
, where symbol tr defines the tensor trace

(tr(σ) = σii). Parameters c1, c2, and a are scalar factors defined as:

c1 =
2
(
3 + a2 − 2α a

√
3
)

9 r
, (5.23)

c2 = 1 + (1− c1)
3

a2
, (5.24)

a =

√
3(3− sinφc)

2
√

2 sinφc
, (5.25)

where r is the parameter controlling stiffness in shear, and α is the function of material parameters
φc, λ

∗ and κ∗

α =
1

ln 2
ln

[
λ∗ − κ∗

λ∗ + κ∗

(
3 + a2

a
√

3

)]
. (5.26)

φc is the critical state friction angle, λ∗ denotes the slope of the normal compression line, and κ∗

stands for the slope of the macrostructural isotropic unloading line.
The second-order tensor N can be defined according to failure condition in the form

N = L
(
Y
M

‖M‖

)
, (5.27)

where Y represents the failure criterion in the form

Y =

( √
3 a

3 + a2
− 1

)
(I1I2 + 9I3)

(
1− sin2 φc

)
8I3 sin2 φc

+

√
3 a

3 + a2
, (5.28)

where I1, I2 and I3 stands for the first, second, and third stress invariants defined as follows

I1 = tr(σM), I2 =
1

2

(
σM : σM − tr(σM)

)
, I3 = det(σM). (5.29)

The direction of ’hypoplastic flow’ is given by the second-order tensor M

M = − a
F

[
σ̂M + dev(σ̂M)− σ̂

M

3

(
6 σ̂M : σ̂M − 1

(F/a)2 + σ̂M : σ̂M

)]
, (5.30)

with factor F defined by

F =

√
1

8
tan2 ψh +

2− tan2 ψh

2 +
√

2 tanψh cos 3θ
− 1

2
√

2
tanψh, (5.31)

where

tanψh =
√

3‖dev(σ̂M)‖, cos 3θ = −
√

6
tr
(
σ̂M · σ̂M · σ̂M

)[
dev(σ̂M) : dev(σ̂M)

]3/2 . (5.32)

The barotropy factor fs introduces the pressure dependency of the model response according to
the mean stress level attained

fs =
3 pM

λ∗(s)

(
3 + a2 − 2α a

√
3
)−1

, (5.33)
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while the pyknotropy factor fd is rather connected with specific volume influence

fd =

(
2pM

pe

)α
, pe = pr exp

[
N(s)− ln(1 + e)

λ∗(s)

]
, (5.34)

where pM is the mean stress at the macrolevel, and pr is the reference pressure.
The model adopts a concept of the normal compression line similar to the one in Cam-Clay

model, where the compression line is being defined with the influence of suction pressure s as

ln(1 + e) = N(s)− λ∗(s) ln

(
pM

pr

)
, (5.35)

with the mentioned slope of normal consolidation (compression) line λ∗ and position of the normal
consolidation line N(s) defined by

N(s) = N + ns ln

(
s

se

)
, (5.36)

λ∗(s) = λ∗ + ls ln

(
s

se

)
, (5.37)

se = s(SMw )(1/γ), (5.38)

where N , ns, and ls are model parameters.
The second-order tensor Hs and factor fu introduce the wetting-induced collapse of the clay

and the following terms give them

Hs = −ci
σ̂M

s λ∗(s)

[
ns − ls ln

pe
pr

]
(−ṡ) for s > sexp and Sw < 1, (5.39)

Hs = 0 otherwise, (5.40)

fu =

(
fd
fSBSd

)m/α
, (5.41)

where sexp is the suction at air expulsion value, fSBSd is the value of pyknotropy factor for stress
states at the state boundary surface (SBS), and factor ci is defined as

ci =
3 + a2 − fd a

√
3

3 + a2 − fSBSd a
√

3
. (5.42)

On the microstructure level, the reversible behavior linear in ln pm vs. ln(1 + em) plot is
adopted, and the stresses are defined as follows

σ̇m = I
pm

κm
ε̇mV , (5.43)

where pm denotes the mean stress at the micro-level, and κm is the model parameter. There is an
explicit formulation of void ratio on the microstructural level given by the term

em = exp

[
κm ln

sr
pm

+ ln(1 + emr )

]
− 1, (5.44)
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where emr and sr are the material parameters representing an arbitrary reference value of void ratio
at the micro-level for suction reference value. The state variable vector of the model is given by
v = {e, s, Sw, eM , em, SMw , as, re}T where all state variables are defined in the rate form similarly
to the stress-strain relation.

Recall that the total stress σtot is defined by equations (5.10), (5.11), (5.13), (5.21) and (5.43).
The total stress is consequently substituted into the linear momentum balance equation (equation
of equilibrium) that can be expressed in terms of the total stresses in the form

divσtot + b = 0 in Ω, u = ū on Γu, l σtot = t̄ on Γt, (5.45)

where u is the displacement vector, b is the body force vector, 0 is the zero vector, l contains
components of the unit outer normal vector of the surface Γt, t is the vector of tractions, and
ū is the vector of prescribed displacements on the surface Γu. Additionally, it holds that Γ =
Γt ∪ Γu and Γu ∩ Γt = 0 where Γ represents the surface of the space domain Ω. The total
strains ε and displacement vector u are linked by the strain-displacement operator matrix ∂ (see
Equation (2.5)).

It should be noted, the numerical solution of hypoplastic models requires the application of a
suitable time integration method. The performance evaluation of different techniques, including
the simple forward Euler method, Crank-Nicolson scheme, Runge-Kutta-Fehlberg (RKF) methods
with substepping, was investigated, e.g., in references [Tamagnini et al., 2000], [Conti et al., 2013],
and [Janda, 2013]. The detailed comparison of the time integration method, including implicit
backward Euler and Crank-Nicholson scheme and explicit high order RKF Dormand-Prince scheme
with substepping, was presented in [Ding et al., 2015]. Implicit integration methods were consid-
ered, e.g., in [Zhang et al., 2001], but generally, there are difficulties with the residual Jacobian
expression for the Newton-Raphson iterative approach. Concerning experiences and conclusions in
the above-listed papers, the explicit integration RKF algorithm with substepping has been selected
and implemented in SIFEL computer code [Koudelka et al., 2017], where several RKF schemes
have been implemented and compared for the time integration of the model. It was concluded that
the scheme proposed by Bogacki-Shampine [Bogacki and Shampine, 1989] performed better than
the standard Runge-Kutta-Fehlberg approach, and it can be considered as an excellent alternative
integration scheme for the presented thermo-hygro-mechanical model [Koudelka et al., 2018].

Thermo-mechanical extension to saturated and unsaturated soils

Plenty of laboratory tests showed the phenomenon that the temperature does not change the
qualitative response of unsaturated soil to a change in suction. That suction does not alter the
qualitative response of the soil exposed to a change in temperature. The constitutive models
for the effects of unsaturation and temperature can be combined in a hierarchical way, which is
presented, e.g., in [Maš́ın, 2017]. The model parameters controlling the position and slope of the
normal compression line (NCL) N and λ∗ in Equation (5.36) are considered to be dependent also
on temperature

ln(1 + e) = N(s, T )− λ∗(s, T ) ln

(
pM

pr

)
, (5.46)
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with

N(s, T ) = N + ns ln

(
s

se

)
+ nT ln

(
T

T0

)
(5.47)

λ∗(s, T ) = λ∗ + ls ln

(
s

se

)
+ lT ln

(
T

T0

)
(5.48)

Recall, the parameters ns and ls describe the effect of suction on the position and slope of NCL,
while nT and lT are additional parameters controlling the influence of temperature. T0 is the
reference temperature, and model parameters N = N(0, T0) and λ∗ = λ∗(0, T0) correspond to
the reference temperature. According to the experimental evidence, the slope of the NCL for
most practical problems may be taken as independent of temperature (thus lT = 0). This means
that nT should be negative to predict a decrease of the preconsolidation pressure with increasing
temperature.

The heating-induced collapse for the states at the SBS is introduced by an additional tensorial
term HT in the general model formulation for macrostructure effective stress (5.21)

σ̇M = fs
(
L : (ε̇M − ε̇MT ) + fdN‖ε̇M − ε̇MT ‖

)
+ fusHs + fuTHT , (5.49)

where the thermal macroscopic strain rate is assumed for a thermally isotropic material

ε̇MT =
αsṪ

3
I (5.50)

with the overall thermal expansion coefficient equal to the thermal expansion coefficient of the
solid constituent αs. Note that the thermal expansion is independent of the void ratio, does not
affect the void ratio, and is fully reversible.

The factor fu in Equation (5.49) is split into two parts, one controlling the wetting-induced
collapse fus, and the second controlling the thermally induced collapse fuT

fus =
[
fd‖fsA−1 : N‖

]ms/α
, fuT =

[
fd‖fsA−1 : N‖

]mT /α (5.51)

with two model parameters ms and mT . The derivation of the HT term follows conceptually the
same approach as the derivation of the term Hs in relations (5.39) with the same factor ci (5.42):

HT = −ci
σ̂M

T λ∗act

(
nT − lT ln

pe
pr

)
Ṫ , (5.52)

where λ∗act is the actual tangent value of the compression index differing from the compression
index λ∗(s, T ). The derivation of λ∗act together and the detailed description of the hypoplastic
model with all parameters are presented in reference [Maš́ın, 2017].

5.2 Extended saturated-unsaturated non-isothermal air

and water flow model for deforming soil medium

The coupled heat and moisture transfer in deforming porous media such as soils can be success-
fully decribed by a micromechanical-based model presented in [Schrefler and Lewis, 1998]. This
approach uses an averaging process assuming that dry air, vapor, and moist air occupy the same
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volume fraction in the volume together with the solid phase and the liquid water. Three pri-
mary unknowns are defined in the material point - pore water pressure, pw, pore gas pressure,
pg, and temperature, T for the transport part. Generally, three unknown displacements u, v, w
are defined for the mechanical part. A choice of primary unknowns with pore capillary pressure,
pc, instead of pore water pressure, pw, is recommended in literature dealing with the modeling
of concrete loaded by high temperatures. To name several references, e.g., [Gawin et al., 1999],
[Schrefler et al., 2002], and [Pesavento, 2000].

This model in connection with the principle of effective stresses is briefly discussed and extended
by an effect of volume changes on the global moisture accumulation function (suction curve)
observed mainly in expansive soils.

5.2.1 Constitutive and transport equations

The moist air in the pore system is usually assumed to be a perfect mixture of two ideal gases dry
air and water vapor. The ideal gas law is applied to dry air (ga), water vapor (gw), and moist air
(g)

pga = ρgaTR/Ma, pgw = ρgwTR/Mw, (5.53)

ρg = ρga + ρgw, pg = pga + pgw, (5.54)

Mg =

(
ρgw

ρg
1

Mw

+
ρga

ρg
1

Ma

)−1

, (5.55)

where R is the universal gas constant, Ma, Mw, and Mg, denote the molar masses of individual
constituents. Densities ρg, ρga, and ρgw stand for the density of moist air, dry air, and water
vapor, respectively. The second Equation (5.54) expresses Dalton’s law [Moran et al., 2018].

In soils, the water is usually present as a condensed liquid that is separated from its vapor
by a concave meniscus (capillary water) because of the surface tension. The capillary pressure is
defined as the pressure difference between the gas phase and the liquid phase, by the capillary
pressure equation

pc = pg − pw. (5.56)

The relationship between the relative humidity, ϕ, and the capillary pressure, pc, in the pores can
be defined by the Kelvin-Laplace law

ϕ =
pgw

pgws
= exp

(
pcMw

ρwRT

)
(5.57)

The water vapor saturation pressure pgws, which is a function of the temperature only, can
be obtained from the Clausius-Clapeyron equation or from empirical formulas proposed, e.g.,
in [ASHRAE, 1993].

The moisture retention curve is an alternative representation of the pore size distribution.
It demonstrates the connection between the suction stress, s, and the water accumulated. The
suction stress rapidly decreases from the upward hygroscopic moisture as the large pores are
filled with water. In soil mechanics, the moisture retention curves are mostly substituted by
the material relationship between capillary pressure pc, saturation degree Sw and temperature
T [Schrefler and Lewis, 1998]
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pc = pc(Sw, T ). (5.58)

In the case of expansive soils, the volume changes are significant phenomena influencing also
the capability of absorbing moisture from an environment. The degree of saturation Sw depends on
suction stress s, void ratio, and the suction-loading path [Maš́ın, 2010]. The previous relationship
can be expressed in an inverse form with the dependence on the mentioned volume changes

Sw = Sw(pc, T, εV ), (5.59)

where εV is the volume strain measured from a reference state. Is should be noted the equality
s = pc = pg − pw.

A similar description of moisture retention is the retention of enthalpy in materials having heat
capacities which can be simply expressed as

H = H(T ), (5.60)

where H is the the mass-specific enthalpy [J·kg−1]. The changes of enthalpy are usually described
in a differential way, which leads to the definition of the specific heat capacity

Cp =

(
∂H

∂T

)
p=const

. (5.61)

The heat capacity varies insignificantly with temperature. It is customary, however, to correct
this term for all phases (solid, water, gas) to introduce the effective heat capacity as

(ρCp)eff = ρsC
s
p + ρwC

w
p + ρgC

g
p , (5.62)

were phase average densities are expresed via volume fractions ρπ = nSπρ
α with index π standing

for water, w, and gas, g. For solid π = s, the phase average density is ρs = (1− n)ρs. Recall, the
curves reflecting material properties of porous media and their descriptions are commonly known
as the state equations. The equation of state for water was presented, e.g., in [Fernandez, 1972].
The linearized form is:

ρw = ρw0
[
1− βwT + αw(pw − pw0)

]
(5.63)

and its time derivative is obtained from the mass conservation equation

Dw(ρwV w)

Dt
= 0, (5.64)

1

ρw0

Dwρw

Dt
=

1

Kw

Dwpw

Dt
− βw

DwT

Dt
, (5.65)

where Kw = 1/αw is the bulk modulus of water with the compressibility coefficient αw, and βw
is the thermal expansion coefficient. The density ρw0 and the pressure pw0 indicate an initial
steady-state at standard conditions.

For the slow phenomena in soils, the moisture convection is not assumed, and the liquid and
gas transport and vapor diffusion taking place in the gas are the remaining driving phenomena.
The generalized form of Darcy’s law is assumed for the water and gas transport:

Jπs = nSπρ
πvπs =

krπkρπ

µπ
(−gradpπ + ρπg) . (5.66)



102 Thermo-hygro-mechanical analysis of bentonite in engineered barrier

The subscript or superscript π = w is for the liquid phase and π = g for the gaseous phase.
krπ denotes dimensionless relative permeability, usually as a function of saturation degree. In
Equation (5.66), k [m2] is the intrinsic permeability matrix, and µπ [kg.m−1s−1] is the dynamic
viscosity. To avoid misunderstanding, note that the so-called permeability matrix, or hydraulic
conductivity, commonly used in the geotechnical literature, is defined as

Kw =
krwkρwg

µw
, [m · s−1], (5.67)

where g is the gravity acceleration. The second driving mechanism is the diffusive-dispersive mass
flux of the water vapor in the gas described by Fick’s law

Jgwg = nSgρ
gw (vgw − vg) = −ρgDggrad

(
ρgw

ρg

)
, (5.68)

where Dg [m2.s−1] is the effective dispersive tensor, which is a function of the tortuosity factor
accounting for the tortuous nature of the pathway in soil. The flux in Equation (5.68) can be
modified into the following equation

Jgwg = −ρgMaMw

M2
g

Dggrad

(
pgw

pg

)
= ρg

MaMw

M2
g

Dggrad

(
pga

pg

)
= −Jgag , (5.69)

where Jgag is the diffusive-dispersive mass flux of dry air in the gas. It should be noted, diffusion
of physically adsorbed water is neglected.

When considering the solid phase as compressible, a relationship for the material time deriva-
tive of the solid density can be obtained from the mass conservation equation in differential form

Ds(ρsV s)

Dt
= 0. (5.70)

By assuming that the solid density is a function of pore pressure ps

ps = Swp
w + Sgp

g, (5.71)

temperature, and the first invariant of the effective stress, the above derivative (5.70) reads

1

ρs
Dsρs

Dt
= − 1

V s

DsV s

Dt
= − 1

Ks

Dsps

Dt
− βs

DsT

Dt
− 1

3(n− 1)Ks

Dstr(σeff)

Dt
. (5.72)

In the above equation, the individual derivatives follow

1

ρs
Dsρs

Dps
=

1

Ks

1

ρs
Dsρs

DT
= −βs (5.73)

1

ρs
Dsρs

DI ′1
= − 1

3(n− 1)Ks

with Ks, the bulk modulus of the grain material. βs is the thermal expansion coefficient for the
solid, and tr(σeff) = I ′1 is the first stress invariant.
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It is essential to introduce the constitutive relationship for the first stress invariant

Ds(trσeff)

Dt
= 3KT

(
divvs +

1

Ks

Dsps

Dt
− βs

DsT

Dt

)
, (5.74)

where KT is the bulk modulus of the skeleton, different from that of the grain material, and

1

Ks

Dsps

Dt
(5.75)

represents an overall volumetric strain rate caused by uniform compression of particles (as op-
posed to the skeleton) by the average pressure ps . In soils, this volumetric strain is relatively
insignificant. It can be ignored, but it is crucial in rock mechanics and concrete modeling, for
which the compressibility of the solid phase is comparable to that of the skeleton.

Including the definition of the Biot’s constant

1− α =
KT

Ks

(5.76)

in Equation (5.72), the final relation for solid skeleton density is obtained

1

ρs
Dsρs

Dt
=

1

(1− n)

(
(α− n)

1

Ks

Dsps

Dt
− βs(α− n)

DsT

Dt
− (1− α)divvs

)
. (5.77)

For incompressible grain material 1/Ks = 0 and α = 1. This does not imply that the solid skeleton
is rigid because of rearrangements of grains and voids.

The generalized Fourier’s Law for the average heat flux of the multiphase medium must com-
plete constitutive equations

qT = λeffgradT (5.78)

with the effective thermal conductivity tensor λeff .

5.2.2 Mass and energy balance equations

The macroscopic mass balance equations start from the equation for solid phase

Dsρs
Dt

+ div (ρsv
s) = 0. (5.79)

The superscript s denotes the solid fraction, vs expresses the mass averaged solid velocity. Recall,
the operator Ds/Dt is the time derivative taken with the moving solid (s) phase. The solid phase
average density corresponds to the volume fraction approach ρs = (1 − n)ρs, where ρs is the
intrinsic solid phase averaged density and n is the average porosity.

The mass balance for the liquid phase (liquid water) includes the relative velocity and the
material time derivative with respect to the moving solid:

Dsρw
Dt

+ vws · gradρw + ρwdiv
(
vs + vws

)
= −ṁvap, (5.80)

where vws = vw − vs is the relative velocity of the liquid phase related to the solid phase, ṁvap

stands for the mass rate of evaporation. The liquid phase averaged density is expressed via volume
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fraction ρw = nSwρ
w, where Sw is the water saturation degree, and ρw is the water density. The

subscript or superscript w denotes the liquid phase (water).
The macroscopic mass balance equation for gas (g) as a mixture of dry air (ga) and water

vapor (gw) is written in a similar way

Dsρg
Dt

+ vgs · gradρg + ρgdiv
(
vs + vgs

)
= ṁvap, (5.81)

where vgs = vg − vs is the relative velocity of the gaseous phase related to the solid phase, and
ρg = nSgρ

g. The gas density includes dry air density and vapor density ρg = ρga + ρgw. The
degree of gas saturation Sg follow the expression

Sg + Sw = 1. (5.82)

The macroscopic energy balance equation for the multiphase system is written with the as-
sumption that the phases of partially saturated porous medium are locally in a thermodynamic
equilibrium state. It means that averaged temperatures of all phases are assumed equal at each
point in the multiphase system, and they are equal to macroscopic average temperature T :(

ρCp
)

eff

∂T

∂t
=
(
ρsC

s
pv

s + ρwC
w
p v

w + ρgC
g
pv

g
)
· gradT

−div
(
λeffgradT

)
= −ṁvap∆Hvap, (5.83)

where the effective specific heat capacity of multiphase medium includes all phases in (5.62), as
well as the effective heat conductivity.

In soil mechanics, the energy balance equation usually does not consider heat source terms.
Moreover, the solid phase’s convective heat flux ρsC

s
pv

s is usually insignificant and neglected. In
the Equation (5.83), ρwC

w
p v

w = (1 − n)ρwCw
p v

w is the convective heat flux in the liquid phase,
ρgC

g
pv

g = (1−n)ρgCg
pv

g is the convective heat flux in the gaseous phase, and ∆Hvap = Hgw−Hw

is the latent heat of evaporation.
The linear momentum balance equation for the whole multiphase medium is based on the con-

cept of effective stresses [Schrefler and Lewis, 1998], where the total stress vector can be expressed
as

σeff = σtot + (Swp
w + Sgp

g)mT. (5.84)

The stress vector σeff expresses the effective stress between grains, the identity tensor is replaced
by the unit vector m = (1, 1, 1, 0, 0, 0). In generalized form, the total stress vector reads

σeff = σtot + χ(Swp
w + Sgp

g)mT. (5.85)

with the effective stress parameter χ being usually a function of saturation degree Sw, see, e.g.,
Equation (5.15), or Biot’s constant α, see, e.g. [Schrefler and Lewis, 1998]. The linear momentum
balance equation assuming slow phenomena is then written in the following form

div
(
σeff − α(Swp

w + Sgp
g)mT

)
+ ρg = 0. (5.86)

Density ρ = (1 − n)ρs + nSwρ
w + nSgρ

g is the average density of the multiphase system, the
vector g stands for the gravity acceleration. The Biot’s constant is usually α = 1 for cohesive soils
assuming as an incompressible grain material (1/Ks = 0).
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Introduction of intrinsic phase-average density with the appropriate volume fraction, the mass
balance equation for the solid phase (5.79) can be rewritten in this form

(1− n)

ρs
Dsρs

Dt
− Dsn

Dt
+ (1− n)divvs = 0. (5.87)

The use of vector identity for water

div(ρwv
w) = ρwdivvw + gradρw · vw, (5.88)

and division by Swρ
w, the continuity equation for water (5.80) is tranformed

Dsn

Dt
+

n

ρw
Dsρw

Dt
+

n

Sw

DsSw
Dt

+
1

Swρw
div(nSwρ

wvws) + ndivvs = − ṁvap

Swρw
. (5.89)

Summation with (5.87), to eliminate Dsn/Dt, gives

(1− n)

ρs
Dsρs

Dt
+ divvs +

n

ρw
Dsρw

Dt
+

n

Sw

DsSw
Dt

+
1

Swρw
div(nSwρ

wvws) = − ṁvap

Swρw
. (5.90)

Introduction of (5.64) and (5.70) for the material derivatives of the water and solid densities
along with (5.71) gives

(α− n)

Ks

Ds

Dt
(Swp

w + Sgp
g)− βs(α− n)

DT

Dt
+ αdivvs +

+n

(
1

Kw

Dspw

Dt
− βw

DsT

Dt

)
+

n

Sw

DsSw
Dt

+
1

Swρw
div(nSwρ

wvws) = − ṁvap

Swρw
. (5.91)

Carrying out derivatives pw and pg, collecting term and employing DsSg/Dt = −DsSw/Dt yields(
(α− n)

Ks

S2
w +

nSw
Kw

)
Dspw

Dt
+

(α− n)

Ks

SwSg
Dspg

Dt
+ αSwdivvs +

−βsw
DsT

Dt
+

(
(α− n)

Ks

Swp
w − (α− n)

Ks

Swp
g + n

)
DsSw

Dt
+

1

ρw
div(nSwρ

wvws) = −ṁvap

ρw
, (5.92)

where

βsw = Sw [(α− n)βs + βw] . (5.93)

The mass balance equation for gas (5.81) as a mixture of dry air and vapor is derived in a similar
way applying the vector identity (5.88) formulated for gas and carrying out of material time
derivative of the first term, and the equation is divided by ρgSg yields

Dsn

Dt
+
n

ρg
Dsρg

Dt
+

n

Sg

DsSg
Dt

+
1

Sgρg
div(nSgρ

gvgs) + ndivvs =
ṁvap

Sgρg
. (5.94)

Eliminating Dsn/Dt by summation with the mass balance equation of the solid (5.87)

(1− n)

ρs
Dsρs

Dt
+ divvs +

n

ρg
Dsρg

Dt
+

n

Sg

DsSg
Dt

+
1

Sgρg
div(nSgρ

gvgs) =
ṁvap

Sgρg
. (5.95)
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Introduction of Eq. (5.53) and (5.54) gives

(1− n)

ρs
Dsρs

Dt
+ divvs +

n

ρg
Ds

Dt

[
1

TR
(pgaMa + pgwMw)

]
+

+
n

Sg

DsSg
Dt

+
1

Sgρg
div(nSgρ

gvgs) =
ṁvap

Sgρg
. (5.96)

Similarly, the introduction of (5.64) and (5.70) for the material derivatives of the water and solid
densities along with (5.71) gives

(α− n)

Ks

SwSg
Dspw

Dt
+

(α− n)

Ks

S2
g

Dspg

Dt
+ αSgdivvs +

−βs(α− n)Sg
DsT

Dt
+

(
(α− n)

Ks

Sgp
g − (α− n)

Ks

Sgp
w + n

)
DsSw

Dt
+

+
nSg
ρg

Ds

Dt

[
1

TR
(pgaMa + pgwMw)

]
+

1

ρg
div(nSgρ

gvgs) =
ṁvap

ρg
, (5.97)

For the coupled thermo-hygro analysis in partially saturated porous media, it is more conve-
nient to consider the mass balance equation for dry air separately from that of vapor and sum the
mass balance equation of water species - liquid water and water vapor [Schrefler and Lewis, 1998].
The advantage of this approach is that the water evaporation ṁvap disappears from these mass
balance equations. The mass balance equation for dry air in connection with the dry air flux
relation gives the following equation

Dg

Dt
(nSgρ

ga) + divJgag + nSgρ
gadivvg = 0. (5.98)

This relation is transformed as the mass balance equation for gas, where material time derivatives
for the moving solid and relative velocities are introduced

Dgf s

Dt
=

Dsf s

Dt
+ gradf s · vgs (5.99)

vgs = vg − vs. (5.100)

The vector identity (5.88) is applied to gas phase, and together with previous relationships (5.99)
and (5.100) is used in mass balance equation for dry air (5.98). Moreover, the resulting equation
is divided by ρgaSg and summed with (5.87). After introduction of (5.71) and (5.77), the following
equation is obtained

(α− n)

Ks

SwSg
Dspw

Dt
+

(α− n)

Ks

S2
g

Dspg

Dt
+ αSgdivvs +

−βs(α− n)Sg
DsT
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+
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(α− n)

Ks

Sgp
g − (α− n)

Ks

Sgp
w + n

)
DsSw

Dt
+

+
nSg
ρga

Dsρga

Dt
+

1

ρga
divJgag +

1

ρga
div(nSgρ

gavgs) = 0. (5.101)
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Constitutive equations for ρga (5.53) and for the flux Jgag (5.69) are then introduced into the
previous Equation (5.101) to obtain

(α− n)
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(
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gavgs) = 0. (5.102)

The derivation of the mass balance equation for vapor is identical to that of dry air. By the
change ga to gw of indices, it results in
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. (5.103)

This equation is multiplied by ρgw and added to the mass balance equation of liquid water (5.92)
(multiplied by ρw). This leads to the mass balance equation for water species (liquid and water),
without the mass rate of water evaporation as(

ρw
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nSw
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Dggrad

(
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+div(nSgρ
gwvgs) + div(nSwρ

wvws) = 0, (5.104)

where

βswg = (α− n)βs (Sgρ
gw + Swρ

w) + nβwSwρ
w. (5.105)

5.2.3 Summary of governing equations

The final form of the governing equations is obtained by the introduction of transport equations
- Darcy’s law (5.66), Fick’s law (5.68), into the mass balance equations for dry air (5.102) and
water species (5.104) together with an assumption of slow phenomena with inertia forces ne-
glected [Krejč́ı et al., 2001]. Assuming small displacements and heat and moisture fluxes related
to the solid phase, material derivatives Ds/Dt can be replaced by spatial derivatives ∂/∂T . For
the expansive soil modeling, the premises of incompressible grains and incompressible water are
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adopted (α = 1, 1/Ks = 0, and 1/Kw = 0). It has to be mentioned that saturation degree is also
the function of the volume changes, so its derivative reads

∂Sw
∂t

=
∂Sw
∂pc

∂pg

∂t
− ∂Sw
∂pc

∂pw

∂t
+
∂Sw
∂T

∂T

∂t
+
∂Sw
∂εV

∂εV

∂t
, (5.106)

where

∂εV

∂t
= m

∂ε

∂t
= m∂

∂u

∂t
= divvs. (5.107)

Note that

∂Sw
∂t

= −∂Sg
∂t

. (5.108)

The final balance equations are summarized below:

Mass conservaton of dry air
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]
= 0. (5.109)

Mass conservaton of water species - liquid water and vapor

(ρwSw + ρgwSg) divvs − βswg
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]
= 0. (5.110)

Enthalpy conservation equation of the multiphase medium

(
ρCp

)
eff

∂T

∂t
+
(
ρwC

w
p v

w + ρgC
g
pv

g
)
· gradT − div

(
λeffgradT

)
= −ṁvap∆Hvap, (5.111)

where ṁvap is obtained from mass balance equation for liquid water

ṁvap = −αSwρwdivvs + ρwβsw
∂sT

∂t
− ρwn∂

sSw
∂t
− div(nSwρ

wvws), (5.112)

and convective heat fluxes read

ρwC
w
p v

w = nρwCw
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krwkρw

µw
(−gradpw + ρwg) ,

ρgC
g
pv

g = nρgCg
p
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(−gradpg + ρgg) . (5.113)
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Linear momentum balance equation of the multiphase medium

div
(
σeff − α(Swp

w + Sgp
g)mT

)
+ ρg = 0. (5.114)

The balance equations must be completed by initial and boundary conditions

Initial conditions

The initial conditions specify the field of displacements, pore water and gas pressures, and tem-
perature at time t = 0

u = u0, pw = pw0 , pg = pg0, T = T0, in Ω and on Γ, (5.115)

where Ω is the domain of interest and Γ its boundary.

Boundary conditions

The boundary conditions for displacements and stresses (2.6) and (2.7) in the mechanical part are
completed by Dirichlet boundary conditions with prescribed values

u = u0, on Γu,

nσ = t, on Γt,

pw = pw, on Γw,

pg = pg, on Γg,

T = T , on ΓT , (5.116)

and the flux boundary conditions for fluxes of gas, water, and heat
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MaMw

M2
g

Dggrad

(
pgw

pg

)]
· n, on Γqg,

Jw + Jgw + β(ρgw − ρgw∞ ) =

[
krwkρw
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]
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krgkρgw
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(−gradpg + ρgg)

]
· n−

[
ρg
MaMw

M2
g

Dggrad

(
pgw

pg

)]
· n, on Γqw,

qT + βT (T − Text) + eσ0(T 4 − T 4
∞) = [−λeffgradT ] · n

+

[
krwkρw

µw
(−gradpw + ρwg) ∆Hvap

]
· n, on ΓqT . (5.117)

The domain boundary Γ is split into parts Γu, Γt, Γw, Γg withs conditions of the first type and
parts of the second type conditions, Γqg, Γqw, ΓqT .

Variational formulation and FE discretisation of the model in space domain

The weighted residual method and Green’s theorem are applied to obtain the governing equations
in weak form. Discretisation in the space of the governing equations in their weak form is performed
using the finite element method (FEM). As usual, the primary variables are expressed by their
nodal values and shape functions. In the standard Galerkin procedure, the weight functions are
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replaced by the corresponding shape functions. The detailed derivation of the final system of
equations via the weighted residual method and the standard Galerkin procedure is presented in
Appendix A. The final non-linear system of equation can be expressed in the matrix form:


Kuu Kuw Kug KuT

Kwu Kww Kwg KwT

Kgu Kgw Kgg KgT

KTu KTw KTg KTT



du
dw
dg
dT

 +

+


Cuu Cuw Cug CuT

Cwu Cww Cwg CwT

Cgu Cgw Cgg CgT

CTu CTw CTg CTT



ḋu
ḋw
ḋg
ḋT

 =


f ext
fw
f g
fT

 , (5.118)

where the subscript u denotes the displacements, and the subscripts w, g, T represent pore water
pressure, pw, pore gas pressure, pg, and temperature, T . The vectors du, dw, dg, and dT stand
for their unknown nodal variables, and the vectors f ext, fw, f g, and fT denote nodal forces and
fluxes prescribed in boundary conditions in (5.117) (usually marked J and q in transport part).
The matrices K with subscripts represent the generally non-linear non-symmetric stiffness, con-
ductivity, permeability, and coupling matrices, and C denotes the capacity and coupling matrix.
The time integration of this system of equations follows the procedure previously described in
Sec. 2.2.

5.3 Computer implementation of hypoplastic model and

test benchmarks

5.3.1 Isothermal water flow in deforming medium

The system of equations (5.118) describes the fully coupled thermo-hygro-mechanical approach.
It is convenient to simplify the model assuming the liquid water transfer as the only driving
mechanism for isothermal saturation processes in soils. All parts with pore gas pressure and
temperature are neglected in the governing system of Equations (5.109) to (5.117). The final
matrix form in Equations (5.118) is simplified into the following fully-coupled form(

Kuu Kuw

0 Kww

)(
du
dw

)
+

(
0 0
Cwu Cww

)(
ḋu
ḋw

)
=

(
f ext
fw

)
, (5.119)

where off-diagonal coupling blocks are

Kuw = −
∫

Ω

BT
um

T(αSw)NwdΩ, Cwu =

∫
Ω

NT
w(αSw)mTBudΩ. (5.120)

Maš́ın in [Maš́ın, 2017] developed the fully-coupled model determined for a material point with
suction and temperature as input parameters. The implementation and coupling of this model,
together with Lewis and Schrefler’s approach, was then implemented as a staggered algorithm.
The transport and mechanical parts run separately with data transfer; see Sec. 2.3.1 and Sec. 2.4.
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In this concept, the transport part runs first before the mechanical part. The system of equa-
tions (5.119) is modified for the partially coupled approach for transport and mechanical parts
separately with the mechanical system of equation rewritten in incremental form

� Transport part

Kwwdw +Cwwḋw = fw + fwu, (5.121)

� Mechanical part

Kuu∆du = ∆fu + ∆fuw, (5.122)

where

fwu = −Cwudu = −
∫

Ω

NT
w(αSw)mTBudΩdu = −

∫
Ω

NT(αSw)∆εV dΩ. (5.123)

Vector ∆εV contains nodal increments of volumetric strains computed from the previous time
step. In the presented notation, the right-hand side vector ∆fuw expresses the forces caused by
changes of pore water pressure computed only in the mechanical part from pore water pressure
(or suction) increments taken from the transport part

∆fuw = −Kuw∆dw = −
∫

Ω

BT
um

T(αSw)NwdΩ∆dw. (5.124)

Vector ∆dw is the vector of pore water pressure increments. In the hypoplastic model, the vector
∆fuw is computed from the total stress definition. The vector of total stress σtot, which is
previously defined by equations (5.13), (5.21), and (5.43) can be expressed in the form of vector
function

σtot = g(ε(u), pw). (5.125)

The time derivative of the stress vector has the form

σ̇tot =
∂g

∂ε
ε̇+

∂g

∂pw
ṗw = Duε̇+ hṗw. (5.126)

The stiffness matrix Du and vector h are derived from Equations (5.12) and (5.21). The rate of
the total stress has to satisfy the equilibrium equation in the form

∂T (Duε̇+ hṗw) + ḃ = 0. (5.127)

Recall, ḃ is the time derivative of the body force vector. Additionally, the hypoplastic model
involves state variables given by vector p that can also be formulated in the rate form and thus
generally, the stress rate can be defined by

τ̇ = Mε̇ = Ψ (τ (t),∆ε(t)) , (5.128)

where τ is the generalized stress vector τ = {σ,p}T , M represents the generalized stiffness
matrix and ε is the generalized strain vector ε = {ε, pw}T and Ψ represents the model response
function on the given input of strain increment ∆ε of the actual time step and attained stress level
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τ . The explicit integration RKF algorithm with substepping has been selected and implemented
in SIFEL. (5.128) represents the initial value problem given by the set of ordinary differential
equations. These equations can be written in generic substep k at time interval [tn; tn+1] formally
as follows

τ k+1 = τ k + ∆tk

s∑
i=1

bi ki (τ k,∆ε(tn+1),∆tk) , (5.129)

where ki (τ k,∆ε(tn+1),∆tk) represents the function Ψ evaluated for the given strain increment
of the actual time step ∆ε(tn+1) = ε(tn+1) − ε(tn) and attained stress levels at the prescribed
points of the time interval. In Equation (5.129), dimensionless step length ∆tk ∈ (0; 1] has been
introduced with the following definition

∆tk =
tk+1 − tk
tn+1 − tn

. (5.130)

A detailed description of the integration by Runge-Kutta-Fehlberg methods is presented in the
reference [Koudelka et al., 2017].

5.3.2 Benchmark tests

The computer implementation of the hypoplastic model in connection with Lewis and Schrefler’s
approach was tested on several examples and benchmarks. Suitable benchmarks can be laboratory
tests presented in [Hausmannová and Vaš́ıček, 2014] and [Hausmannová, 2017]. These studies fo-
cus on the impact of using high hydraulic gradients on combined measurements of hydraulic
conductivity and swelling pressure. The hydraulic conditions are supposed to be consistent with
possible water pressures in a deep repository. Both parameters are determined in a full saturation
state. Measuring these parameters in such a low-permeable bentonite material requires much
time. Therefore, the high hydraulic gradients may accelerate the determination of these parame-
ters. Experiments with the Czech bentonite 75 (B75) from Černý vrch deposit were selected for
numerical simulations. The material was uniaxially compacted in the laboratory to reach the re-
quired dry density ρd = 1200 to 1750 kg/m3. The tested samples have a diameter of 30 mm, and a
height of 20 mm. The initial values of hydraulic conductivity and swelling pressure were evaluated
using a saturation pore water pressure pw = 1 MPa corresponding to the gradient of gradpw = 50
MPa/m (hydraulic gradient 5000) [Hausmannová and Vaš́ıček, 2014]. A unique device was used
to measure the hydraulic conductivity and the swelling pressure (Figure 5.2). The setup of this
device is described in detail in the reference [Hausmannová and Vaš́ıček, 2014].

The finite element mesh consists of 20 axisymmetric quadrilateral elements in the vertical
direction. Linear approximation functions are used in the transport part and quadratic in the
mechanical part. The watering process was modeled as a prescribed pore water pressure from
the bottom with the values taken from the measurements. Two switching boundary conditions
model the top permeable surface. For the first, the water flux is prescribed zero on the boundary
until the water head reaches the closest material point, equal to zero water pressure. Then, the
conditions are changed to the Dirichlet boundary condition with prescribed zero water pressure.
This procedure is commonly used for free soil surface modeling. The initial pore water pressure
pw0 = -100 MPa is set for all benchmarks. The soil parameters used in the simulations are used
from the recent calibration for bentonite B75 [Sun et al., 2021]. The sample is fixed to avoid its
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Figure 5.2: Scheme of the measuring device [Hausmannová and Vaš́ıček, 2014].

swelling, and no friction between bentonite material and the steel structure of the testing device
is neglected.

Three tests with dry density ρd=1298 kg/m3, ρd = 1498 kg/m3, and ρd = 1743 kg/m3 were used
for verification and validation of coupling of mentioned material models in SIFEL computer code
and setup of their parameters. A comparison of selected results for different configurations of dry
density and hydraulic conductivity is presented. Figures 5.3 and 5.4 show the history of swelling
stress for bentonite samples of dry densities ρd = 1498 kg/m3 and ρd = 1743 kg/m3, respectively.
From the considerable amount of computations, the best results closed to the measurements
are obtained by using of Bogacki-Shampine integration scheme [Koudelka et al., 2017] for the
hypoplastic model in connection with the smoothed water retention curve [Sun et al., 2021] and
for maximum time step tmax=1000 s [Scaringi et al., 2022]. It has to be mentioned that such
numerical simulations are strongly non-linear, time step length-dependent, and time-consuming.
Most of them took from 10 to 20 hours, despite the use of multithreading architecture via OpenMP
system.

Attained levels of swelling pressure at full saturation depend only on the setup of initial dry
densities. This fact corresponds to the previous experiments and hypoplastic model calibration.
The swelling stress for bentonite with ρd = 1498 kg/m3 is about 3 MPa, and for ρd = 1743
kg/m3 is 10.5 MPa, respectively. The initial swelling pressures growth is influenced by the sample
saturation rate, related to intrinsic permeability (or hydraulic conductivity). The permeability
was assumed constant for all benchmarks. For better compliance with the measurements in the
initial phase, the application of a relationship dependent on saturation degree can be successfully
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Figure 5.3: History of water pressure and swelling pressure for bentonite B75 ρd = 1498 kg/m3

and Kw = 2.0·10−13 m/s [Scaringi et al., 2022] (left), and zoom of the initial phase (right).

Figure 5.4: History of water pressure and swelling pressure for bentonite B75 ρd = 1743 kg/m3

and Kw = 1.0·10−13 m/s [Scaringi et al., 2022], and zoom of the initial phase (right).

used. The coincidence between simulations and measurements is validated as relatively good. The
trends of watering with loading water pressure jumps are captured well.

From the analysis of the results, it can be concluded that coupling the hypoplastic model in
connection with Lewis and Schrefler’s approach in a staggered scheme works well. However, the
model response is primarily dependent on the hypoplastic model setup.



Thermo-hygro-mechanical analysis of bentonite in engineered barrier 115

5.4 THM model of Interaction experiments at the Bukov

URF

The thermo-hygro-mechanical (THM) model of the physical model (PM) is a part of the project
“In-situ interaction physical models at the Bukov Underground Research Facility (URF)” solved
with the cooperation of the Czech technical university in Prague (CTU), Radioactive waste repos-
itory authority (SÚRAO), and Nuclear research institute Řež (ÚJV Řež, a. s.) [SÚRAO, 2021].
The project aims to compare several bentonite materials and their interactions under deep geolog-
ical repository conditions using the results of several in-situ experiments in a hard rock mass. The
results of these studies will support the decision of usability of materials and their combinations
in the future deep geological repository. The mathematical THM model comprises two analyses.
The first analysis is the 3D global model of heat transfer in the rock mass analyzing the thermal
interaction of the physical models. The main criterion is the temperature profile and its evolution
in the surrounding rock mass.

The second analysis is the detailed thermo-hygro-mechanical (THM) model of two selected
physical models. The computed results are validated against in-situ measurements. The study is
further extended by a parametric study of the mathematical model of PM No. 4. Various input
values of material density and permeability have been investigated to establish their influence
on the model performance, focusing on getting a close fit to the measured data. The validated
mathematical model will be used to interpret physical model behavior [Krejč́ı et al., 2020].

Figure 5.5: Installation of physical models in the test chamber ZK-3S at Bukov URF, heated
models on the left and unheated models on the right [Svoboda et al., 2019a].

Ten physical models simulating a bentonite barrier in a radioactive waste repository were
installed in the test chamber of the rock mass at the Bukov URF in the Czech republic. Five
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Figure 5.6: Installation and instrumentation of the physical model No. 5 [Svoboda et al., 2019a].

PMs are heated, No. 1 - 4 to 100 ◦C, No. 5 to 200 ◦C, in the left wall in Figure 5.5, and five
PMs are unheated placed in the opposite wall of the test chamber, the right wall in Figure 5.5.
Each PM was constructed as an individual cylindrical cartridge inserted into the prepared 2 m
deep borehole, see Figure 5.6. The diameter is 25 cm for heated PMs and 10 cm for unheated,
respectively. The heater simulates the canister with radioactive material, a surrounding bentonite
barrier, and concrete plugs on both sides. The bentonite material is used from Černý vrch deposit
in the north-western region of the Czech Republic selected as the primary buffer material by the
Czech nuclear waste agency SURAO. The bentonite is named BCV 2017. PMs were filled with
modified bentonite in pellets, blocks, or as a bulk and compacted material. The initial dry density
and thus initial porosity were different for each PM. The values were in the range of 1267 kg/m3

to 1455 kg/m3 [Svoboda et al., 2019b]. The PMs are thoroughly instrumented by temperature,
moisture, and pressure sensors for continuous monitoring. Moreover, temperature sensors are
also installed into surrounding rock mass to observe models’ thermal interaction (Figure 5.7 and
Figure 5.8). For a better temperature distribution image, each borehole has temperature sensors
at several levels, usually 0.1 m, 1 m, 2 m, and 3 m deep from the chamber surface.

5.4.1 3D global model of heat transfer in the rock mass

Blind Model

The purpose of the global model was to support the design and the placement of the physical
models in the test chamber and the prognosis of the heat transfer in the rock mass with the
subsequent validation against measured data. The first phase of the model consists of two 3D
numerical models with inclined boreholes in 45 degrees from the horizontal plane and horizontal
boreholes, see Figure 5.9. In these supporting models, the analyses simulate only heat transfer for
three years since the start of heating [Krejč́ı et al., 2019]. This period is supposed as a working
life of the experiments. The finite element analysis is based on the system of Equations (2.55)

KTdT +CT ḋT = fT .
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Figure 5.7: Situation of the physical models in the test chamber, heated models on the left and
nonheated models on the right.

Figure 5.8: Front view of the wall with the heated physical models (black circles) and boreholes
for temperature sensors No. 1-15 (red dots).
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Figure 5.9: Geometry of 3D model of rock mass with horizontal PMs created in GiD mesh modeler.

Dirichlet boundary conditions were prescribed on the boreholes internal surfaces of PMs No. 1 -
4 with a constant temperature 100◦C and PM No. 5 with 200◦C. The layout of the heated PMs’ for
the model with horizontal boreholes is illustrated in Figures 5.7 and 5.8. The finite element mesh
consists of 870 404 tetrahedral elements with linear approximation functions and 158 054 nodes
created in an academic version of GiD modeler [GiD, 2021]. The Newton boundary condition
for heat transmission was prescribed for external surfaces in the test chamber (denoted ZK-3S)
and in the main gallery (denoted BZ1-XII). The temperature of ambient air was initially set to
16◦C. The Dirichlet boundary condition with a prescribed temperature of 16◦C was also assumed
for the model external surfaces. These surfaces belong to the rock mass block of the dimensions
30 m x 18.6 m x 19 m, which is supposed to be sufficient surrounding mass volume. Considering
the PM’s dimensions to the rock mass, the bentonite material, heater, and surrounding concrete
material were not modeled. This assumption is supposed to give a little higher temperatures than
in reality. The time increment of the numerical analysis was set initially to one hour, increasing
to one month at the end of the computation. Material parameters of the rock mass were set for
granite rock and are listed in Table 5.1.

The analysis leads to conclusion, the heated physical models cause a temperature increase
of about 3◦C in unheated models. Figures 5.10 and 5.11 illustrate the temperature distribution
around the heated PMs after one day and after three years, respectively. The visual control of
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Quantity Value

Volume weight ρ 2871 kg/m3

Specific heat Ceff 748 J· kg−1· K−1

Thermal conductivity λeff 2.15 W· m−1· K−1

Table 5.1: Material parameters of the granite rock for the global 3D heat transfer model
[Krejč́ı et al., 2020].

Figure 5.10: Detail of temperature distribution after one day around the heated PMs in ◦C.

animated temperature results found no rise in temperatures after three years of simulation. Heat is
transferred mainly by conduction in the rock mass. Convection and radiation in the test chamber
are not assumed in the model. A slight temperature elevation is registered on the floor, over and
around the test chamber. The notable increase in temperatures is happening in the first year of
computation. The calculated heating powers 2382 W and 5027 W were necessary for the start
phase of the heating process to warm up PMs to temperatures 100◦C and 200◦C, respectively. For
the subsequent temperatures maintenance, the heating powers 587 W and 1504 W were required.

Model validation

An augmented numerical model was created to check material parameters obtained from samples
taken from the rock mass and to support the presumed minor influence of the elevated tempera-
tures on the unheated physical models. This model comes out from the previous 3D model with
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Figure 5.11: Detail of temperature distribution after three years around the heated PMs in ◦C.

horizontal heated PMs. The initial and boundary conditions were mainly improved based on the
measured data. The initial temperature was set to 13.8◦C. The external temperatures in the test
chamber and in the main gallery were improved concerning measurements. Values for heaters
were taken directly from thermometers on the heater-bentonite interface of each PM. The Dirich-
let boundary conditions in PM boreholes were changed to Newton’s heat transfer conditions. The
heat transfer parameter β = 18.2 W· m−2· K−1 was optimized from a simple 1D analysis in order
to match temperatures in sensors on the bentonite-rock interface [Krejč́ı et al., 2019]. The model
geometry was not changed. Only the finite element mesh, which has 308121 nodes and 1607404
tetrahedral elements, was generated and refined around PMs (Figure 5.12).

Figure 5.13 illustrates the temperature profile in the rock mass of the PMs section in the depth
of 1m in time 230 days from the measurement onset, which was 11/02/2019 at 8:10 am. Figure 5.14
shows temperature around the PM1 also in 230 days. The computed and measured temperatures
for the selected thermometers always in depths 1 m and 2 m are depicted in Figures 5.15 to 5.17.
The differences between 1◦C to 6◦C validate the correct setup of initial and boundary conditions
derived from the in situ measured data. Results analysis verifies the negligible effect of rock mass
warming in the area of unheated PMs, which is also supported by measurements.

5.4.2 THM model of physical model No. 4 (100 ◦C)

The second part of the THM analysis concentrates on detailed models of two selected PMs, No. 4
heated to 100◦C and No. 5 heated to 200◦C. These models simulate only the cartridges inserted
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Figure 5.12: Finite element mesh of augmented 3D model of the rock mass.

into the stiff surrounding rock, see Figure 5.18. The finite element mesh discretizes only one upper
half of bentonite and concrete plugs on both sides as an axisymmetric domain with the horizontal
axis of symmetry in the heater, which was not modeled. Bentonite material was modeled by the
complex hypoplastic model (Sec. 5.1). While the concrete was modeled only as an elastic material
with thermal dilatation effect in mechanical part and as a fully saturated material enabling the
only heat conduction in transport part. The finite element mesh built in the GiD academic version
consists of 8163 nodes and 2620 quadrilateral axisymmetric elements with linear approximation
functions in the transport part and quadratic in the mechanical part. Boundary conditions were
set as Dirichlet with temperature interpolated and extrapolated from thermometers data on both
interfaces heater-bentonite (denoted 4.13 and 4.13) and bentonite-rock (denoted 4.11 and 4.12)
which is illustrated by Figure 5.19. The watering process was modeled as a prescribed pore water
pressure on the whole external surface on the bentonite-rock interface (sensor 4.51). The initial
temperature was set to 13.8◦C, initial pore water pressure was set to -100 MPa corresponding to
a suction negative value, and gas pore pressure was equal to ambient air pressure 101 kPa. The
initial porosity was set according to the initial dry density 1600 kg/m3 for bentonite blocks. The
computation simulates 230 days of running experiment starting also at 11/02/2019 at 8:10 am.
According to the hypoplastic model implementation (Sec. 5.3) as an individual material module in
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Figure 5.13: Temperature profile in the vertical section after 230 days in ◦C.

Figure 5.14: Temperature profile in the vertical section of the borehole PM5 after 230 days in ◦C.

the MEFEL part, the staggered algorithm scheme solves the non-linear system of Equations (5.118)
in transport part

 Kww Kwg KwT

Kgw Kgg KgT
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 dw
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+
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Figure 5.15: Temperature history in borehole No. 1 - sensors No. 101.11 and 101.12 (left), and in
borehole No. 2 - in sensors No. 102.12 and 102.13 (right).

Figure 5.16: Temperature history in borehole No. 3 - sensors No. 103.12 and 103.13.

and the system of Equations (2.30) in the incremental form in mechanical part:

Ku∆du = ∆f ext + ∆f 0.

Material parameters for the transport part with the coupled hygro-thermal model are listed
in Table 5.2 and the mechanical part with the hypoplastic model in Table 5.3. The following
figures illustrate the results of selected quantities in the bentonite material. Figures 5.20 and 5.21
show profiles of temperature, saturation, and pore pressure. Horizontal and radial stresses are
depicted in Figure 5.22. It can be seen that the bentonite barrier is fully saturated after 160 days.
The maximal horizontal and radial stresses are around 3500 kPa, appropriate to swelling pressure
obtained for bentonite material with dry density 1600 kg/m3. The comparison of temperature
history in the location of selected thermometers depicted in Figure 5.23 shows good agreement
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Figure 5.17: Temperature history in borehole No. 7 - sensors No. 107.11 and 107.12 (left), and
borehole No. 8 - sensors No. 108.11 and 108.12 (right).

Figure 5.18: Geometry of the physical model No. 4 (up), and finite element mesh of the numerical
model (down).

Figure 5.19: Scheme of thermometers included to boundary conditions.

between computed and measured values. It should be pointed out, resulting temperatures come
from average data from temperature sensors placed on opposite sides. Time evolutions of satura-
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Parameter Description Value

n0 initial porosity 0.4425
kintr intrinsic permeability 1.0·10−20 m2

Kw hydraulic conductivity 1.0·10−13 m·s−1

(corresponding to intrinsic permability)
ρs skeleton volume weight 2870 kg/m3

ρd dry density 1600 kg/m3

Ceff Effective specific heat 1000.0 J·kg−1·K−1

λdry Dry effective thermal conductivity 0.6 W·m−1·K−1

λwet Wet effective thermal conductivity 1.35 W·m−1·K−1

Table 5.2: Parameters of the bentonite material for transport part.

tion degree and horizontal stress are in Figure 5.24. In comparison with measurements, computed
saturation degree has slower growth. A jump growth of in situ data can be explained by faster
water convection between pellets and bentonite blocks, while the numerical model assumes homo-
geneous material. The horizontal pressure computed from reactions in the left side nodes reaches
the maximal value of 3000 kPa, which is much higher than the measured value of about 850 kPa
in the pressure cell (Figure 5.24) It leads to the decision that initial dry density ρd = 1600 kg/m3

is somewhat overrated in the analysis.

Figure 5.20: Temperature [in Kelvins] (left) and saturation (right) profiles in model No. 4.

5.4.3 THM model of physical model No. 5 (200 ◦C)

The hot PM No. 5 is modeled in the same manner as PM No. 4. In this case, the boundary
conditions for temperature are taken from thermometers 5.11 to 5.13 located in the same positions.
The watering of this PM is similar, and the pore pressure values are taken from sensor 5.51. Results
of the computation are presented in the same way as in the previous analysis. Unfortunately,
the comparison of measured and computed horizontal pressure is missing due to the damage
of pressure cells caused by high temperatures. For this PM, there is observed a little slower
saturation process than in previous PM No. 4. The fully saturation state is reached later than
in 160 days. Horizontal and radial stresses have nearly the same profiles and maximal values of
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Parameter Description Value

ϕc Critical state friction angle of macrostructure 25◦

in a standard soil-mechanics context
λ∗ Slope of isotropic normal compression line 0.13

in ln(pM/pr) versus ln(1 + e) space
κ∗ Macrostructural volume strain in pM (unloading) 0.06
N Position of isotropic normal compression line 1.73

in ln(pM/pr) versus ln(1 + e) space
ν Parameter controlling stiffness in shear 0.25
ns Dependency of position of isotropic 0.012

normal compression line on suction
ls Dependency of slope of isotropic -0.005

normal compression line on suction
nT Dependency of position of isotropic -0.07

normal compression line on temperature
lT Dependency of slope of isotropic 0.0

normal compression line on temperature
m (1) Control of and thus dependency of wetting-heating-induced 1.0

compaction on distance from state boundary surface;
(2) control of double-structure coupling function and thus
response to wetting-drying and heating-cooling cycles[Maš́ın, 2013]

αs Dependency of microstructural volume strains on temperature 0.00015 K−1

κm Dependency of microstructural volume strains on pm 0.07
emr0 Reference microstructural void ratio for reference temperature Tr 0.45

reference suction sr, and zero total stress
csh Value of fm for compression 0.002
se0 Air-entry value of suction -2700 kPa

for reference macrostructural void ratio eM0
a Dependency of macrostructural air-entry value of suction 0.118 N·m−1

on temperature
b Dependency of macrostructural air-entry value of suction -0.000154

on temperature N·m−1·K−1

ae Ratio of air entry and air expulsion values of suction 1.0
for macrostructure water retention model

sr Reference suction for emr0 -2000.0 kPa
eM0 Reference macrostructural void ratio 0.7

for air-entry value of suction of macrostructure
Tr Reference temperature 286 K

Table 5.3: Parameters of the bentonite material for mechanical part [Maš́ın, 2017].

about 3500 kPa. Figures 5.25 and 5.26 illustrate profiles of temperature, saturation, and pore
pressure. Horizontal and radial stresses are depicted in Figure 5.27. The history of temperature,
pore pressure, and saturation degree in selected sensors represents graphs in Figures 5.28 and 5.29.
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Figure 5.21: Pore pressure profile in model No. 4 [kPa].

Figure 5.22: Horizontal stress (left) and radial stress (right) profiles in model No. 4 [kPa].

Figure 5.23: Temperature history in sensors No. 4.22 and 4.32.

The differences between computation and measurements are obvious, mainly for pore pressure.
While the computation shows a gradual saturation process in homogenous material, the moisture
sensor (piezometer) cannot measure negative values of pore pressure. Moreover, the watering
process can also be strongly influenced by fast water convection in voids and gaps between pellets
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Figure 5.24: Saturation degree history in sensors No. 4.21 and 4.31 (left) and horizontal pressure
history in sensor No. 4.41 (right).

and bentonite blocks.

Figure 5.25: Temperature [in Kelvins] (left) and saturation (right) profiles in model No. 5.

5.4.4 Validation of THM model of physical model No. 4 (100 ◦C) and
parametrical study

The presented simulations show significant differences versus measured data in the initial water-
ing phase, where the measurements have a faster saturation increase. However, the significant
disparity is evident in horizontal pressure, which is overestimated in the numerical model. The
attained level of swelling pressure can be affected by the initial dry density and permeability val-
ues. For this purpose, the parametric study with various setups (Table 5.4) was performed for
PM No. 4. In this section, the parametrical study aimed to validate material parameters and to
obtain responses closer to experimental measurements. Selected results of computer simulations
with various combinations of dry density, ρd, and hydraulic conductivity, Kw, are then presented
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Figure 5.26: Pore pressure profile in model No. 5 [kPa].

Figure 5.27: Horizontal stress (left) and radial stress (right) profiles in model No. 5 [kPa].

Figure 5.28: Temperature history in sensors No. 5.22 and 5.32.

in Figure 5.30. The main criterion for comparison is the horizontal pressure (swelling pressure)
and the history of saturation degree. It is evident the last combination gives the best match to
the measurements in PM4, where the dry density was determined ρd = 1371 kg/m3.
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Figure 5.29: Pore pressure history in sensors No. 5.21 and 5.31 (left) and computed saturation
degree history (right).

Dry density ρd [kg/m3] Hydraulic conductivity Kw [m·s−1]

1. 1600 1.0·10−13

2. 1500 3.75·10−13

3. 1400 5.0·10−13

4. 1300 7.75·10−13

5. 1300 2.0·10−12

Table 5.4: Combinations of material parameters for the parametric study.

Figure 5.30: Saturation degree history in sensors No. 4.21 and 4.31 (left) and horizontal pressure
history in sensor No. 4.41 (right).
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5.4.5 Conclusions about THM model of Interaction experiments
at the Bukov URF

In the first phase, the aim of the thermo-hygro-mechanical model of interaction experiments at
the Bukov URF was to verify the thermal influence of heated physical models to unheated models
located on the opposite side of the test chamber. The heat transfer analysis proved no significant
thermal influence. It was concluded slow warming of surrounding rock mass and slight temperature
increase around unheated PMs. This fact was also supported by a model validation against in
situ measurements with improved boundary conditions. Moreover, the setup of correct material
parameters was validated.

The second phase of the THM model was the computational prediction of the physical mod-
els’ behavior. The numerical analysis was solved as a coupled thermo-hygro-mechanical problem
by staggered algorithm combining the hypoplastic model for expansive soils in mechanical part
and the micromechanical based model of hygro-thermal transfer in a porous medium in transport
part. The experiment was modeled as an axisymmetric domain. The computation with the initial
material parameters setup gives results differing in the initial phase of watering in the saturation
rate and the reached value of swelling pressure. This effect is explained by the fact that the math-
ematical model assumes homogeneous and isotropic material, whereas the physical model contains
voids and gaps between pellets and bentonite blocks. The following model validation against in
situ measurements better captures the effects mentioned above. The evolution and temperature
profiles are simulated very well, as well as the reached steady state with jumps in values connected
with outages of experiments. Conclusions made from numerical simulations provide valuable in-
formation not only for the setup of the numerical model but mainly for the production of the
physical model, which brings several uncertainties. It can be stated, the numerical model using
the hypoplastic model for expansive soils in connection with the micromechanical-based approach
for hygro-thermal transport appears to be very promising in modeling interaction experiments
and engineered barriers [Krejč́ı et al., 2020].
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Chapter 6

Conclusions

This thesis was motivated by the research in coupled thermo-hygro-mechanical problems and their
applications to real structures and practical issues. The work presented two primary approaches
of the coupled problem solution, fully coupled algorithm and partially coupled system with the
staggered algorithm. The main principles were explained by the simple thermo-mechanical prob-
lem and its discretisation by the finite element method. These coupled algorithms were imple-
mented into the open-source computer code SIFEL (Simple Finite Elements), which architecture
was briefly described. The implementation was illustrated by three selected numerical analyses
created in collaboration with the partner industrial companies and institutions. The presented
studies were performed from the multiphysics point of view. Therefore, each study described used
material models and approaches and their combinations in the final model. Moreover, the results
of the analyses were discussed and validated against in situ measurements.

The first analysis dealt with the thermo-mechanical simulation of the behavior of the nu-
clear power plant containment. The reliability and durability of reactor containments depend
directly on the prestressing system. General results from in situ measurements during the op-
eration showed the increase of deformations and the increase of prestress losses since the onset
of service. Most measurements also indicated that the temperature has a significant influence
on the prestress losses. The containment was studied under cyclic temperature loading during
service life when stages of service and planned stops are changed. An advanced two-level model
was used for predicting the prestress losses and the structure response. The global macro-level
model aimed to model the evolution of prestress forces changed by the temperature and climatic
loading. Consequently, the local meso-model was created, and it was loaded by the mechanical
and thermal loading from the global model. The staggered coupled thermo-mechanical analysis
was the local model’s main part, which had to explain the time-dependent processes in the con-
tainment wall. The core of the used mechanical model consists of Bažant’s B3 creep model based
on the microprestress-solidification theory with ageing effect influenced by moisture and temper-
ature changes. The original discrete model was extended by continuous retardation spectrum
due to speed up the computation. The creep model was supplemented with the damage model
in the isotropic and orthotropic formulation. The combination of models was achieved under
the assumption of small strains when the additive strain decomposition was adopted. The heat
transfer analysis run in parallel with the mechanical analysis. The analysis results obtained from
the connection of the simplified global model and the local model showed relatively good coinci-
dence with in situ measurements. The explanation of the increase of radial strains and decrease
of tendon forces since the onset of service was based on the theoretical knowledge in concrete
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creep influenced by the temperature changes and partly on the prestress losses measurements.
The influence of the temperature on the mechanical response during the service was proved.

The second analysis concerned the thermo-hygro-mechanical analysis of climatic conditions’
impact on the current state of Charles bridge. For this purpose, Künzel and Kiessl’s phenomenolog-
ical model suitable for structures under the typical conditions was described and used in the anal-
ysis. The model can be used right for the study of building structures under the standard climatic
conditions, and its parameters can be simply determined from laboratory measurements. The final
model was completed by the orthotropic damage model, which is suitable for three-dimensional
analyses of quasi-brittle materials like concrete and masonry influenced by temperature and mois-
ture changes. Homogenized and averaged material parameters were used for the masonry. The
staggered algorithm was also used for this partially coupled thermo-hygro-mechanical analysis.
This analysis aimed to obtain a notion about the current mechanical state of the Charles bridge.
The results presented could serve as a severe basis for providing a reliable estimate of real states
of stress and damage in Charles bridge. It was shown that climatic loading is the most serious for
stone bridges as it is responsible for the nucleation and further development of cracks. The results
analysis concluded that shear stresses due to the temperature differences between the upper and
lower parts of the parapets and the vertical movements of the vaults lead to the ultimate damage
in the horizontal joint and the need for a complete repair of parapets. Fortunately, it seems the
damage state and cracks evolution do not influence the stability and bearing capacity of the bridge
distinctly.

The last analysis dealt with the thermo-hygro-mechanical analysis of interaction experiments,
physical models (PMs) at the Bukov Underground Research Facility in the Czech Republic. In
the first phase, the goal of the analysis was to verify the thermal influence of heated physical
models on unheated models located on the opposite side of the test chamber. The heat transfer
analysis proved no significant thermal influence. It was concluded slow warming of surrounding
rock mass and slight temperature increase around unheated PMs. A numerical model validation
also supported it against in situ measurements with improved boundary conditions. The second
phase of the THM analysis was the computational prediction of the physical models’ behavior. The
well-instrumented physical models simulating a bentonite barrier in a radioactive waste repository
were installed in the test chamber of the host rock mass. For the solution, the coupled heat
and moisture transfer based on micromechanical approaches of porous media was selected. It
is suitable, e.g., for simulation of soils or concrete structures exposed to fire. This model was
described in detail and extended by the influence of volume changes on the water retention curve.
The bentonite behavior was described by the complex hypoplastic model for expansive clays
presented in [Maš́ın, 2017]. The staggered algorithm also solved the numerical analysis as a coupled
thermo-hygro-mechanical problem. The PMs were modeled as axisymmetric domains. Results of
the analysis were also subsequently validated against in situ measurements. The evolution and
temperature profiles were simulated very well, and they reached a steady state with jumps in values
connected with outages of experiments. Conclusions made from numerical simulations provide
valuable information not only for the setup of the numerical model but mainly for the production of
the physical model, which brings several uncertainties. It can be stated, the numerical model using
the hypoplastic model for expansive soils in connection with the micromechanical-based approach
for hygro-thermal transport appears to be very promising in modeling interaction experiments
and engineered barriers.

All results were obtained with the help of the in-house open-source FEM software SIFEL, which
is based on the modular architecture enabling the solution of mechanical and transport, hygro-
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thermal, problems. For the coupled thermo-hygro-mechanical problems, two basic algorithms
were implemented, the staggered algorithm for partially coupled problems and the fully coupled
algorithm for complex coupled problems, respectively. Despite the complexity of the fully coupled
scheme, the staggered algorithm is preferred to solve the real issues. This fact is supported by the
analyses presented in this thesis, where the used mathematical models were developed individually.
They were extended and combined in the staggered scheme, which is easier and more effective for
computer implementation. However, the derivation and development of the fully coupled approach
is still a big challenge for the author for future work.
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Appendix A

Variational formulation and FE solution

A.1 Extended saturated-unsaturated non-isothermal air

and water flow model for deforming soil medium

The discretization of mass and energy conservation equations (5.109) to (5.111) via the finite
element method is derived in this appendix. For this purpose, the final balance equations with
initial and boundary conditions are summarized again:

Mass conservaton of dry air
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Enthalpy conservation equation of the multiphase medium
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Linear momentum balance equation of the multiphase medium

div
(
σeff − α(Swp
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g)mT

)
+ ρg = 0. (A.4)

Initial conditions at time t = 0

u = u0, pw = pw0 , pg = pg0, T = T0, in Ω and on Γ, (A.5)

Boundary conditions of type I

u = u0, on Γu,

nσ = t, on Γt,

pw = pw, on Γw,

pg = pg, on Γg,

T = T , on ΓT , (A.6)

Boundary conditions of type II
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The Galerkin method is applied to obtain the governing equations in weak form. The weight
functions δpw, δpg, δT , and δu have to satisfy the boundary conditions of type I (A.6) and
boundary conditions of type II (A.7). Furthermore, the weight functions are, in general arbitrary.
For convenience, their choice is limited only in such a way that

δu = 0, on Γu,

δpw = 0, on Γw,

δpg = 0, on Γg,

δT = 0, on ΓT , (A.8)
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and applying the derivative from Equation (5.106)
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with the relationship of the volume strain rate (5.107)
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the governing Equations (A.1) to (A.7) in their variational form are the following:

Mass conservaton of dry air

∫
Ω

δpg
[
ρga(1− Sw)m∂

∂u

∂t

]
dΩ +

−
∫

Ω

δpg
[
ρgan

(
∂Sw
∂pc

∂pg

∂t
− ∂Sw
∂pc

∂pw

∂t
+
∂Sw
∂T

∂T

∂t
+
∂Sw
∂εV

m∂
∂u

∂t

)]
dΩ +

−
∫

Ω

δpg
[
ρgaβs(1− n)(1− Sw)

∂T

∂t

]
dΩ +

+

∫
Ω

δpg
[
n(1− Sw)

(
Ma

TR

∂pg

∂t
− Ma

T 2R

∂T

∂t
− Ma

TR

∂pgw

∂pc

(
∂pg

∂t
− ∂pw

∂t

))]
dΩ +

−
∫

Ω

δpg
[
n(1− Sw)

(
Ma

TR

(
∂pgw

∂T
− pgw

T

)
∂T

∂t

)]
dΩ +

+

∫
Ω

δpgdiv

[
ρg
MaMw

M2
g

Dg

(
1

pg
∂pgw

∂pc
(gradpg − gradpw)− pgw

(pg)2
gradpg

)]
dΩ + (A.14)

+

∫
Ω

δpgdiv

[
krgkρga

µg
(−gradpg + ρgg)

]
dΩ = 0.
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Mass conservaton of water species - liquid water and vapor∫
Ω

δpw
[
(ρwSw + ρgw(1− Sw))m∂

∂u

∂t

]
dΩ−

∫
Ω

δpw
[
βswg

∂T

∂t

]
dΩ +

+

∫
Ω

δpw
[
(ρw + ρgw)n

(
∂Sw
∂pc

∂pg

∂t
− ∂Sw
∂pc

∂pw

∂t
+
∂Sw
∂T

∂T

∂t
+
∂Sw
∂εV

m · ∂ ∂u
∂t

)]
dΩ +

+

∫
Ω

δpw
[
n(1− Sw)

(
Mw

TR

∂pgw

∂pc

(
∂pg

∂t
− ∂pw

∂t

)
+
Mw

TR

(
∂pgw

∂T
− pgw

T

))
∂T

∂t

]
dΩ +

−
∫

Ω

δpwdiv

[
ρg
MaMw

M2
g

Dg

(
1

pg
∂pgw

∂pc
(gradpg − gradpw)− pgw

(pg)2
gradpg

)]
dΩ +

+

∫
Ω

δpwdiv

[
krgkρgw

µg
(−gradpg + ρgg)

]
dΩ + (A.15)

+

∫
Ω

δpwdiv

[
krwkρw

µw
(−gradpw + ρwg)

]
dΩ = 0.

Enthalpy conservation equation of the multiphase medium∫
Ω

δT

[(
ρCp

)
eff

∂T

∂t

]
dΩ +

+

∫
Ω

δT

[
nρwCw

p

krwkρw

µw
(−gradpw + ρwg) · gradT

]
dΩ +

+

∫
Ω

δT

[
nρgCg

p

krgkρgw

µg
(−gradpg + ρgg) · gradT

]
dΩ +

−
∫

Ω

δTdiv [λeffgradT ] dΩ +

−
∫

Ω

δT∆Hvap

[
αSwρ

wm∂
∂u

∂t

]
dΩ +

∫
Ω

δT∆Hvap

[
ρwβsw

∂T

∂t

]
dΩ +

−
∫

Ω

δT∆Hvap

[
ρwn

(
∂Sw
∂pc

∂pg

∂t
− ∂Sw
∂pc

∂pw

∂t
+
∂Sw
∂T

∂T

∂t
+
∂Sw
∂εV

m∂
∂u

∂t

)]
dΩ + (A.16)

−
∫

Ω

δT∆Hvapdiv

[
krwkρw

µw
(−gradpw + ρwg)

]
dΩ = 0.

Linear momentum balance equation of the multiphase medium∫
Ω

δu div
[
σeff − α(Swp

w + Sgp
g)mT

]
dΩ +

∫
Ω

δuρgdΩ = 0. (A.17)

To the divergence operator in the set of Equations A.14 to A.16, Green’s theorem is applied
in the form ∫

Ω

Φ∇TΨdΩ = −
∫

Ω

(∇Φ)T ·ΨdΩ +

∫
Γ

ΦΨ · ndΓ, (A.18)

where Φ is a scalar function and Ψ = {Ψx,Ψy,Ψz} is a vector. Remind ∇T stands for the
divergence operator, div, and ∇ denotes the gradient operator, grad. In the governing equations,
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the weighting functions and the terms of the gradient of primary variables are the scalars and
the vector functions, respectively, in Green’s theorem. With the application of A.18, new integral
terms on the boundary related to fluxes arise in the equations. They will be partly eliminated
employing the boundary conditions type II in Equation A.7.

In the linear momentum conservation equation, the term of the differential operator div = ∂
gives the stress tensor σ, so Green’s theorem is presented in the following form∫

Ω

Φ∂TσdΩ = −
∫

Ω

(∇Φ)TσdΩ +

∫
Γ

ΦlσdΓ. (A.19)

Applying A.18 and A.19, keeping in mind the form of boundary conditions, the weak form of
governing equations is obtained:

Mass conservaton of dry air

∫
Ω

δpg
[
ρga(1− Sw)m∂

∂u

∂t

]
dΩ +

−
∫

Ω

δpg
[
ρgan

(
∂Sw
∂pc

∂pg

∂t
− ∂Sw
∂pc

∂pw

∂t
+
∂Sw
∂T

∂T

∂t
+
∂Sw
∂εV

m∂
∂u

∂t

)]
dΩ +

−
∫

Ω

δpg
[
ρgaβs(1− n)(1− Sw)

∂T

∂t

]
dΩ +

+

∫
Ω

δpg
[
n(1− Sw)

(
Ma

TR

∂pg

∂t
− Ma

T 2R

∂T

∂t
− Ma

TR

∂pgw

∂pc

(
∂pg

∂t
− ∂pw

∂t

))]
dΩ +

−
∫

Ω

δpg
[
n(1− Sw)

(
Ma

TR

(
∂pgw

∂T
− pgw

T

)
∂T

∂t

)]
dΩ +

−
∫

Ω

(∇δpg)T

[
ρg
MaMw

M2
g

Dg

(
1

pg
∂pgw

∂pc
(∇pg −∇pw)− pgw

(pg)2
∇pg

)]
dΩ + (A.20)

−
∫

Ω

(∇δpg)T

[
krgkρga

µg
(−∇pg + ρgg)

]
dΩ +

∫
Γqg

δpgJgadΓ = 0.
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Mass conservaton of water species - liquid water and vapor

∫
Ω

δpw
[
(ρwSw + ρgw(1− Sw))m∂

∂u

∂t

]
dΩ−

∫
Ω

δpw
[
βswg

∂T

∂t

]
dΩ +

+

∫
Ω

δpw
[
(ρw + ρgw)n

(
∂Sw
∂pc

∂pg

∂t
− ∂Sw
∂pc

∂pw

∂t
+
∂Sw
∂T

∂T

∂t
+
∂Sw
∂εV

m∂
∂u

∂t

)]
dΩ +

+

∫
Ω

δpw
[
n(1− Sw)

(
Mw

TR

∂pgw

∂pc

(
∂pg

∂t
− ∂pw

∂t

)
+
Mw

TR

(
∂pgw

∂T
− pgw

T

))
∂T

∂t

]
dΩ +

+

∫
Ω

(∇δpw)T

[
ρg
MaMw

M2
g

Dg

(
1

pg
∂pgw

∂pc
(∇pg −∇pw)− pgw

(pg)2
∇pg

)]
dΩ +

−
∫

Ω

(∇δpw)T

[
krgkρgw

µg
(−∇pg + ρgg)

]
dΩ +

−
∫

Ω

(∇δpw)T

[
krwkρw

µw
(−∇pw + ρwg)

]
dΩ + (A.21)

+

∫
Γqw

δpw [Jw + Jgw + β(ρgw − ρgw∞ )] dΓ = 0.

Enthalpy conservation equation of the multiphase medium

∫
Ω

δT

[(
ρCp

)
eff

∂T

∂t

]
dΩ +

+

∫
Ω

δT

[
nρwCw

p

krwkρw

µw
(−∇pw + ρwg) ·∇T

]
dΩ +

+

∫
Ω

δT

[
nρgCg

p

krgkρgw

µg
(−∇pg + ρgg) ·∇T

]
dΩ +

+

∫
Ω

(∇δT )T [λeff∇T ] dΩ +

−
∫

Ω

δT∆Hvap

[
αSwρ

wm∂
∂u

∂t

]
dΩ +

∫
Ω

δT∆Hvap

[
ρwβsw

∂T

∂t

]
dΩ +

−
∫

Ω

δT∆Hvap

[
ρwn

(
∂Sw
∂pc

∂pg

∂t
− ∂Sw
∂pc

∂pw

∂t
+
∂Sw
∂T

∂T

∂t
+
∂Sw
∂εV

m∂
∂u

∂t

)]
dΩ +

+

∫
Ω

(∇δT )T

[
∆Hvap

krwkρw

µw
(−∇pw + ρwg)

]
dΩ + (A.22)

+

∫
ΓqT

δT
[
qT + βT (T − Text)

]
dΓ = 0.
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Linear momentum balance equation of the multiphase medium

−
∫

Ω

(∂δu)T
[
σeff − α(Swp

w + Sgp
g)mT

]
dΩ +

∫
Γt

δu tdΓ +

∫
Ω

δu ρgdΩ = 0. (A.23)

The continuous functions from the previous relations are discretized by the finite element method
in the following form

u ≈Nudu, ∂u ≈ Budu, δu ≈Nuwu, ∂δu ≈ Buwu,

T ≈NTdT , ∇T ≈ BTdT , δT ≈NTwT , ∇δT ≈ BTwT ,

pw ≈N pdw, ∇pw ≈ Bpdw, δpw ≈N pww, ∇δpw ≈ Bpww,

pg ≈N pdg, ∇pg ≈ Bpdg, δpg ≈N pwg, ∇δpg ≈ Bpwg. (A.24)

The introduction of approximations (A.24) into Equations (A.20) to (A.23) and elimination of
weighting functions nodal values give the final form of the balance equations∫

Ω

NT
p

[
ρga(1− Sw)mBu

∂du
∂t

]
dΩ +

−
∫

Ω

NT
p

[
ρgan

(
∂Sw
∂pc

N p
∂dg
∂t
− ∂Sw
∂pc

N p
∂dw
∂t

+
∂Sw
∂T

N p
∂dT
∂t

+
∂Sw
∂εV

mBu
∂du
∂t

)]
dΩ +

−
∫

Ω

NT
p

[
ρgaβs(1− n)(1− Sw)NT

∂dT
∂t

]
dΩ +

+

∫
Ω

NT
p

[
n(1− Sw)

(
Ma

TR
N p

∂dg
∂t
− Ma

T 2R
NT

∂dT
∂t

)]
dΩ +

+

∫
Ω

NT
p

[
n(1− Sw)

(
−Ma

TR

∂pgw

∂pc

(
N p

∂dg
∂t
−N p

∂dw
∂t

))]
dΩ +

−
∫

Ω

NT
p

[
n(1− Sw)

(
Ma

TR

(
∂pgw

∂T
− pgw

T

)
NT

∂dT
∂t

)]
dΩ +

−
∫

Ω

BT
p

[
ρg
MaMw

M2
g

Dg

(
1

pg
∂pgw

∂pc
(Bpdg −Bpdw)− pgw

(pg)2
Bpdg

)]
dΩ + (A.25)

−
∫

Ω

BT
p

[
krgkρga

µg
(−Bpdg + ρgg)

]
dΩ +

∫
Γqg

NT
p J

gadΓ = 0.
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∫
Ω

NT
p

[
(ρwSw + ρgw(1− Sw))mBu

∂du
∂t

]
dΩ−

∫
Ω

NT
p

[
βswgNT

∂dT
∂t

]
dΩ +

+

∫
Ω

NT
p

[
(ρw + ρgw)n

(
∂Sw
∂pc

N p
∂dg
∂t
− ∂Sw
∂pc

N p
∂dw
∂t

)]
dΩ +

+

∫
Ω

NT
p

[
(ρw + ρgw)n

(
∂Sw
∂T

N p
∂dT
∂t

+
∂Sw
∂εV

mBu
∂du
∂t

)]
dΩ +

+

∫
Ω

NT
p

[
n(1− Sw)

(
Mw

TR

∂pgw

∂pc

(
N p

∂dg
∂t
−N p

∂dw
∂t

))]
dΩ +

+

∫
Ω

NT
p

[
n(1− Sw)

(
Mw

TR

(
∂pgw

∂T
− pgw

T

)
NT

∂dT
∂t

)]
dΩ +

+

∫
Ω

BT
p

[
ρg
MaMw

M2
g

Dg

(
1

pg
∂pgw

∂pc
(Bpdg −Bpdw)− pgw

(pg)2
Bpdg

)]
dΩ +

−
∫

Ω

BT
p

[
krgkρgw

µg
(−Bpdg + ρgg)

]
dΩ +

−
∫

Ω

BT
p

[
krwkρw

µw
(−Bpdw + ρwg)

]
dΩ + (A.26)

+

∫
Γqw

NT
p [Jw + Jgw + β(ρgw − ρgw∞ )] dΓ = 0.

∫
Ω

NT
T

[(
ρCp

)
eff
NT

∂dT
∂t

]
dΩ +

+

∫
Ω

NT
T

[
nρwCw

p

krwkρw

µw
(−∇pw + ρwg) ·BTdT

]
dΩ +

+

∫
Ω

NT
T

[
nρgCg

p

krgkρgw

µg
(−∇pg + ρgg) ·BTdT

]
dΩ +

+

∫
Ω

BT
T [λeffBTdT ] dΩ +

−
∫

Ω

NT
T∆Hvap

[
αSwρ

wmBu
∂du
∂t

]
dΩ +

∫
Ω

NT
T∆Hvap

[
ρwβswNT

∂dT
∂t

]
dΩ +

−
∫

Ω

NT
T∆Hvap

[
ρwn

(
∂Sw
∂pc

N p
∂dg
∂t
− ∂Sw
∂pc

N p
∂dw
∂t

)]
dΩ +

−
∫

Ω

NT
T∆Hvap

[
ρwn

(
∂Sw
∂T

NT
∂dT
∂t

+
∂Sw
∂εV

mBu
∂du
∂t

)]
dΩ +

+

∫
Ω

BT
T

[
∆Hvap

krwkρw

µw
(−Bpdw + ρwg)

]
dΩ + (A.27)

+

∫
ΓqT

NT
T

[
qT + βT (NTdT − Text)

]
dΓ = 0.
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For a linear elastic solid, assuming thermal expansion effect from Equations (2.84) and (2.85)∫
Ω

BT
uσ

effdΩ =

∫
Ω

BT
uDu (ε− εT ) dΩ =

∫
Ω

BT
uDu

(
Budu −mTαT (NTdT − T0)

)
dΩ, (A.28)

the final form of the linear momentum balance equation of the multiphase medium reads

−
∫

Ω

BT
uDu

(
Budu −mTαT (NTdT − T0)

)
dΩ +

∫
Ω

BT
uαSwm

TN pdwdΩ +∫
Ω

BT
u (1− αSw)mTN pdgdΩ +

∫
Γt

Nu tdΓ +

∫
Ω

Nu ρgdΩ = 0. (A.29)

The above Equations (A.25), (A.26), (A.27), and (A.29) can be rewritten in the matrix form
Kuu Kuw Kug KuT

Kwu Kww Kwg KwT

Kgu Kgw Kgg KgT

KTu KTw KTg KTT



du
dw
dg
dT

 +

+


Cuu Cuw Cug CuT

Cwu Cww Cwg CwT

Cgu Cgw Cgg CgT

CTu CTw CTg CTT



ḋu
ḋw
ḋg
ḋT

 =


f ext
fw
f g
fT

 , (A.30)
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where the matrices are definead as

Kuu =

∫
Ω

BT
uDuBudΩ, (A.31)

Kuw = −
∫

Ω

BT
uαSwm

TN pdΩ, (A.32)

Kug = −
∫

Ω

BT
u (1− αSw)mTN pdΩ, (A.33)

KuT = −
∫

Ω

BT
uDum

TαTNTdΩ, (A.34)

Kwu = 0, (A.35)

Kww = −
∫

Ω

BT
p ρ

gMaMw

M2
g

Dg
1

pg
∂pgw

∂pc
BpdΩ,+

∫
Ω

BT
p

krwkρw

µw
BpdΩ, (A.36)

Kwg =

∫
Ω

BT
p ρ

gMaMw

M2
g

Dg

(
1

pg
∂pgw

∂pc
− pgw

(pg)2

)
BpdΩ +

∫
Ω

BT
p

krgkρgw

µg
BpdΩ, (A.37)

KwT = 0, (A.38)

Kgu = 0, (A.39)

Kgw =

∫
Ω

BT
p ρ

gMaMw

M2
g

Dg

(
1

pg
∂pgw

∂pc

)
BpdΩ, (A.40)

Kgg =

∫
Ω

BT
p

krgkρga

µg
BpdΩ−

∫
Ω

BT
p ρ

gMaMw

M2
g

Dg

(
1

pg
∂pgw

∂pc
− pgw

(pg)2

)
BpdΩ, (A.41)

KgT = 0, (A.42)

KTu = 0, (A.43)

KTw =

∫
Ω

BT
T∆Hvap

krwkρw

µw
BpdΩ (A.44)

KTg = 0, (A.45)

KTT =

∫
Ω

BT
TλeffBTdΩ +

∫
ΓqT

NT
TβTNTdΓ−

∫
Ω

NT
Tnρ

wCw
p

krwkρw

µw
∇pw ·BTdΩ +

−
∫

Ω

NT
Tnρ

gCg
p

krgkρgw

µg
∇pg ·BTdΩ, (A.46)
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Cuu = 0, (A.47)

Cuw = 0, (A.48)

Cug = 0, (A.49)

CuT = 0, (A.50)

Cwu =

∫
Ω

NT
p (ρwSw + ρgw(1− Sw))m ·BudΩ +

+

∫
Ω

NT
p (ρw + ρgw)n

∂Sw
∂εV

m ·BudΩ, (A.51)

Cww = −
∫

Ω

NT
p (ρw + ρgw)n

∂Sw
∂pc

N pdΩ−
∫

Ω

NT
p n(1− Sw)

Mw

TR

∂pgw

∂pc
N pdΩ, (A.52)

Cwg =

∫
Ω

NT
p (ρw + ρgw)n

∂Sw
∂pc

N pdΩ +

∫
Ω

NT
p n(1− Sw)

Mw

TR

∂pgw

∂pc
N pdΩ, (A.53)

CwT = −
∫

Ω

NT
p βswgNTdΩ +

∫
Ω

NT
p (ρw + ρgw)n

∂Sw
∂T

N pdΩ +

+

∫
Ω

NT
p n(1− Sw)

Mw

TR

(
∂pgw

∂T
− pgw

T

)
NTdΩ, (A.54)

Cgu =

∫
Ω

NT
p ρ

ga(1− Sw)mBudΩ−
∫

Ω

NT
p ρ

gan
∂Sw
∂εV

mBudΩ, (A.55)

Cgw =

∫
Ω

NT
p ρ

gan
∂Sw
∂pc

N pdΩ +

∫
Ω

NT
p n(1− Sw)

Ma

TR

∂pgw

∂pc
N pdΩ, (A.56)

Cgg = −
∫

Ω

NT
p ρ

gan
∂Sw
∂pc

N pdΩ +

∫
Ω

NT
p n(1− Sw)

Ma

TR
N pdΩ +

−
∫

Ω

NT
p n(1− Sw)

Ma

TR

∂pgw

∂pc
N pdΩ, (A.57)

CgT = −
∫

Ω

NT
p ρ

gan
∂Sw
∂T

N pdΩ−
∫

Ω

NT
p ρ

gaβs(1− n)(1− Sw)NTdΩ +

−
∫

Ω

NT
p n(1− Sw)

Ma

T 2R
NTdΩ−

∫
Ω

NT
p n(1− Sw)

Ma

TR

(
∂pgw

∂T
− pgw

T

)
NTdΩ,(A.58)

CTu = −
∫

Ω

NT
T∆HvapαSwρ

wmBudΩ−
∫

Ω

NT
T∆Hvapρ

wn
∂Sw
∂εV

mBudΩ, (A.59)

CTw =

∫
Ω

NT
T∆Hvapρ

wn
∂Sw
∂pc

N pΩ, (A.60)

CTg = −
∫

Ω

NT
T∆Hvapρ

wn
∂Sw
∂pc

N pdΩ, (A.61)

CTT =

∫
Ω

NT
T

(
ρCp

)
eff
NTdΩ +

+

∫
Ω

NT
T∆Hvapρ

wβswNTdΩ−
∫

Ω

NT
T∆Hvapρ

wn
∂Sw
∂T

NTdΩ, (A.62)
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and the right-hand side vectors are definead as

f ext =

∫
Γt

Nu tdΓ +

∫
Ω

Nu ρgdΩ−
∫

Ω

BT
uDum

TαTT0dΩ, (A.63)

fw = −
∫

Γqw

NT
p [Jw + Jgw + β(ρgw − ρgw∞ )] dΓ +

+

∫
Ω

BT
p

krgkρgw

µg
ρggdΩ +

∫
Ω

BT
p

krwkρw

µw
ρwgdΩ, (A.64)

f g = −
∫

Γqg

NT
p J

gadΓ +

∫
Ω

BT
p

krgkρga

µg
ρggdΩ, (A.65)

fT = −
∫

ΓqT

NT
T

[
qT − βTText

]
dΓ−

∫
Ω

BT
T∆Hvap

krwkρw

µw
ρwgdΩ, (A.66)

It should be noted the values of prescribed forces in vector t, prescribed fluxes Jw, Jgw, Jga, qT ,
external values of temperature Text, and concentrations of water vapor ρgw and ρgw∞ , as well as the
initial temperatures T0 are approximated via FEM stated in Equations (A.24).
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elastic and fracture properties of regular and irregular masonry from nonlinear homogenization.
Computers & Structures, 254.
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Bibliography 157

[Zeman et al., 2008] Zeman, J., Novák, J., Šejnoha, M., and Šejnoha, J. (2008). Pragmatic
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