Admissions test example for master study programme: Civil Engineering

Name and surname of the applicant (in block letters):
Numeric application code:

Guidelines for completion of test:

- On each page, fill in your name and your application code
- Each question has four answers while only one answer is correct.
 - Marked correct answer means 4 points
 - Marked incorrect answer means -1 point
 - Unmarked answer means 0 points.
- Correct answer shall be marked with a cross across the letter indicating the correct answer.
 - o To undo the crossed answer, draw a circle around the crossed letter.
 - Other ways of marking the answer are considered incorrect (-1 point)
- Duration of the test is 90 minutes.

The exam questions:

1) Determine the characteristic value of axial force at the base of the internal reinforced concrete column S2. Consider the loading from one floor (self-weight, live load, dead load). The influence area of column is defined by the mid-span of adjacent spans. The density of reinforced concrete is 25kN/m³.

660 kN

[D]

Depth of RC slab : h_d = 240 mm

Other dead load: (g-g₀)_k = 2 kN/m²

Live load: q_k = 3 kN/m²

■ Column dimension: 400 × 500 mm

Column height: h=3.0 m

Admissions test example for master study programme: Civil Engineering

Name and surname of the applicant (in block letters):
Numeric application code:

- 2) 4-storey RC in-situ frame system (uniformly distributed load in all spans + wind load parallel to the frames' plane); spacing of frames is even, columns and beams have constant sections. Compare values of loading for edge frame A and inner frame B:
 - [A] Both vertical load and wind load are bigger for frame B than for frame A
 - [B] Both vertical and horizontal load are the same for both frames
 - [C] Vertical load is same for frame A and B, wind load is bigger for frame B
 - [D] Vertical load is bigger for frame B, wind load is the same for both frames

- 3) What does the creep of concrete mean?
 - [A] The increase in strain with time resulting from the drying of concrete
 - [B] The increase in strain with time resulting from long-term sustained load
 - [C] The decrease in stress in concrete with time resulting from the constant deformation
 - [D] The decrease in compressive strength of concrete with time due to concrete aging
- 4) The effect of corrosion induced by carbonation does not have to be considered for:
 - [A] Plain concrete
 - [B] Reinforced concrete
 - [C] Pre-stressed concrete
 - [D] Steel fiber reinforced concrete
- 5) What does the water to cement ratio mean?
 - [A] The weight ratio of the amount of water to the amount of cement
 - [B] The volume ratio of the amount of water to the amount of cement
 - [C] The volume ratio of the amount of water to the amount of concrete
 - [D] The weight ratio of the amount of cement to the amount of concrete
- 6) The overhanging under-reinforced concrete beam is subjected to point loads "F" (see picture). The first flexural cracks are expected to occur:
 - [A] At the midspan of the beam
 - [B] Over the supports of the beam
 - [C] Over the supports and at the midspan of the beam at the same time
 - [D] At the beam ends

7) Which of the following loading fits into the group of permanent loads?

Admissions test example for master study programme: Civil Engineering

Name and surname of the applicant (in block letters):

Numeric application code:

- [A] Self-weight
- [B] Snow load
- [C] Wind load
- [D] Live load (imposed load)
- 8) Determine the minimum height H of the attic to ensure the stability of the reinforced concrete awning (consider only the self-weight of the structure). The density of both materials is 2500 kg/m³; all safety factors equal to 1.

- [B] 1000 mm
- [C] 1200 mm
- [D] 1400 mm

- 9) The flexural capacity of non-reinforced concrete cross-section of the depth "2h" in comparison with the cross-section of the depth "h" is:
 - [A] 2x higher
 - [B] 4x higher
 - [C] 8x higher
 - [D] 16x higher

- 10) Axial force is zero in the members:
 - [A] 1,2,9,10
 - [B] 1,2,3,9,10
 - [C] 3,6,9,10
 - [D] None of the above statements is valid

- 11) The core of the cross-section has shape:
 - [A] Square
 - [B] Tetragon

Admissions test example for master study programme: Civil Engineering

Name and surname of the applicant (in block letters):

Numeric application code:

- [C] Pentagon
- [D] Hexagon
- 12) The planar structure is statically indeterminate:
 - [A] 3x
 - [B] 2x
 - [C] 5x
 - [D] 4x

- 13) The planar frame is solved by the slope deflection method. How many unknown displacements, linear and angular, we must introduce? The structure has N degrees of freedom:
 - [A] 4x
 - [B] 6x
 - [C] 5x
 - [D] 7x

- 14) The theoretical effective length of columns supporting a rigid plate in the plane is:
 - [A] L = 2*h
 - [B] L = 0.5*h
 - [C] L=h
 - [D] L = 0.7*h

- 15) The value of the hogging bending moment My over the middle support of steel beam class 3 with uniform continual load g_d is:
 - [A] $(1/12) * g_d * L^2$
 - [B] $(1/8) * g_d * L^2$
 - [C] $(1/8) * g_d * L$
 - [D] $(1/4) * g_d * L^2$

Admissions test example for master study programme: Civil Engineering

Name and surname of the applicant (in block letters):

Numeric application code:

16) Critical force of ideal member is possible express by following formula:

[A]
$$N_{cr} = \frac{\pi \cdot E \cdot I^2}{L}$$

[B]
$$N_{cr} = \frac{\pi^2 \cdot L \cdot I}{E}$$

[C]
$$N_{cr} = \frac{\pi^2 \cdot E \cdot I}{L^2}$$

[D]
$$N_{cr} = \frac{\pi^2 \cdot E \cdot L^2}{I}$$

- 17) Elastic section modulus $(W_{el,y})$ of "I" profile shown in the picture is:
 - [A] 216 000 mm³
 - [B] 176 000 mm³
 - [C] 216 000 mm⁴
 - [D] 106 000 mm³

- 18) In fire design of timber structure using reduced cross-section method is strength and rigidity drop compensated by:
 - [A] Increasing of the charring depth
 - [B] Increasing of the characteristic strength of timber
 - [C] Increasing of the time when the fire affecting the structure
 - [D] All factors mentioned above
- 19) To perform its essential function, the reinforcement plaster mesh should be positioned:
 - [A] In the bottom third of plaster thickness (in the third furthest from the surface)
 - [B] In the top third of plaster thickness (in the third closest to the surface)
 - [C] At the interface between masonry and plaster
 - [D] None of the above, the mesh acts in the same way regardless its position in the plaster layer
- 20) A building component has thermal transmittance $U = 0.5 \text{ W/(m}^2 \cdot \text{K})$. The area of the building component is $A = 10 \text{ m}^2$ and the temperature difference across the building component is 20 °C. The heat loss through this building component is:

Admissions test example for master study programme: Civil Engineering

Name and surname of the applicant (in block letters):	
[A]	200 W
[B]	100W
[C]	100 W/K
[D]	200 W/s
21) The action	on of the resulting lateral pressure on an existing retaining wall:
[A]	Is higher if the underground water is below the foundation level of the wall
[B]	Is not changed by elevation of the water level above the foundation level
[C]	Is lower if the underground water is below the foundation level due to uplift
[D]	Is lower if the underground water is below the foundation level
22) Relation	ship between active earth pressure and angle of internal friction of soil:
[A]	Active pressure is higher if the angle of internal friction increases
[B]	Active earth pressure decreases if the angle of internal friction increases
[C]	Active earth pressure is not related to the angle of internal friction
[D]	Active earth pressure is related to the hydrostatic pressure only
23) Resistan	ce of a vertically loaded pile which is embedded in dense sand is composed of:
[A]	The shaft resistance (skin friction) but the toe (tip) resistance is negligible
[B]	The shaft and the tip resistance
[C]	The tip resistance but the shaft resistance is negligible
[D]	The resistance of both (shaft and tip) but the total pile resistance is negligible because of
	the sand which is non-cohesive soil
24) Heat red	overy in the ventilation equipment is used usually for:
, [A]	Heating of the supply air with heat from the exhaust air.
[B]	Direct heating of hot water with waste heat from the fan drive.
[C]	Adjustment of absolute supply air humidity.
[D]	Drive fan motor.
25) 0 1	

25) Condensing boiler:

- [A] Utilizes changes in the state of water in the flue gas to increase efficiency.
- [B] Produces steam from the condensate in the steam heating system.
- [C] Is used to increase the return water temperature in the hot water system.
- [D] Is in the district heating station.